XMM-2dF Wide Angle Serendipitous Survey

Jonathan Tedds (Leicester)

Mat Page (MSSL)

XMM-Newton Survey Science Centre
Introduction

- XMM-Newton X-ray serendipitous surveys – XID program
- 2dF optical spectroscopic characterisation of X-ray sample
 - Provisional ID statistics
 - z-distribution
- Unique science examples: rare objects
 - e.g. any BAL QSOs?
- Opt/IR imaging follow-up
 - 1XMM/SDSS/UKIDSS test case
- Summary
The XMM-Newton serendipitous sky survey

- XMM-Newton with EPIC cameras
 - large FOV
 - large throughput
 - excellent high energy response
- Every new XMM-Newton pointing discovers ~30-150 serendipitous X-ray sources.
- 700 pointings/year ⇒ about 50,000 new X-ray sources/year

Angular resolution worse than Chandra
- depth limited by confusion
 \(f_x \sim 4 \times 10^{-16}, T \sim 100 \text{ ksec} \)
But higher s/n X-ray spectra at medium/faint fluxes
SSC XID programme

- statistical identifications for the whole XMM-Newton serendipitous catalogue
- **Core programme: spectroscopic IDs** (1000 sources/sample):
 - High b faint sample \((\sim 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1})\)
 - High b medium sample \((\sim 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1})\) \(\Rightarrow\) AXIS (PI Barcons) + 2dF
 - **bulk of objects contributing to X-ray background are at fluxes \(\sim 10^{-14}\): depth of XMM serendipitous survey**
 - High b bright sample \((\sim 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1})\) \(\Rightarrow\) Della Ceca et al 04
 - Galactic Plane Sample \((\sim 7 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1})\) \(\Rightarrow\) PI Motch
- **Imaging programme** \((u,g',r',i',Z,H)\): a large number of XMM-Newton fields
 - Imaging Programme + Optical/IR photometric imaging \(\Rightarrow\) X-ray properties
 - Core Programme
 - Probable identification
 - ‘calibration’
2df ID Motivation – Characterise X-ray Sky

- AXIS (PI Barcons, IFCA) making a major contribution towards characterising the XMM medium sample in North

- Striving for an unbiased survey with statistical completeness

- But 1000 sources with spectral IDs ambitious!

- Solution: 2dF at the AAT in South
 - Complement AXIS
 - Very high observing efficiency
 - simply aim for the maximum identification rate
How much have we observed?

- 27 pointings with 2dF
- 68 XMM fields including LSS fields – some multiple exposures
- Typically 1hr exposures
 - **any** X-ray source with an optical counterpart that could be allocated a fibre
 - Prioritise according to X-opt offset
 - 1/2 of fields have WFC/WFI multiband opt imaging

- **In total > 3000 X-ray sources observed and reduced**
 - Identification stage almost complete and we have certainly beaten the barrier of 1000 sources brighter than $F_{0.5-4.5} > 10^{-14}$ erg cm$^{-2}$ s$^{-1}$
 - Opens up unique areas of parameter space
Distribution of 2dF fields on sky
Provisional 2dF ID statistics

area~8 deg², >50% ID rate, ~50% final sample
Provisional 2dF ID statistics

Number

BLAGN
NELG/Gal

candidate $z > 5$ AGN

redshift

Jonathan Tedds
Leicester University
3-5% of optically selected QSOs (SDSS ~10-15%?)

Virtually absent in previous X-ray surveys because of absorption
- None in ROSAT surveys!

But are there any which are transmissive enough to be picked up in current X-ray surveys?
- Certainly will require a large survey to have a hope of detecting more than one or two
- Not heavily obscured in the optical - perfect area to be addressed by 2dF medium survey

Unique science example: Broad Absorption Line QSOs
Example BALQSOs found with 2dF

XMM: $F_{0.5-4.5} = 9.4 \times 10^{-15} \text{ergs}^{-1}\text{cm}^{-2}$
Results: Broad absorption line QSOs

- ~10-20 BALQSOs found cf ~1000 QSOs
 - 1-2% of the X-ray QSO population
 - 1/3 the fraction found in past optical surveys
 - this is suprisingly large... but new SDSS result?
 - ~15% optical QSO population, 1.7<z<3.5 (Reichard et al 03)

- The X-ray selected ones will have the lowest X-ray absorption of the BALQSO population
 - Are their optical absorption lines typical of the optically selected population?
 - What are their X-ray column densities?
 - Homogeneous reprocessing of all 2dF XMM data completed
 - Current public pipeline
 - 2XMM test pipeline
with Silvia Mateos, Mike Watson

X-ray colour selection → obscured source → ID with NELG z=0.23

HR1=(CR2-CR1)/(CR2+CR1) etc
- CR1=0.2-0.5keV
- CR2=0.5-1.0keV
- CR3=1.0-2.0keV
- CR4=2.0-4.5keV
- CR5=4.5-12keV
BLAGN

- What are their X-ray spectra? => XMM reprocessing complete
 >150 BLAGN spectra EPIC counts >200
 e.g. stack, bin spectra - Fe line?

- What is the space density of z~4 QSOs in X-ray surveys - do they decline at z > 2 in the same way that optical QSOs do?

- How common is X-ray absorption?

- Ly-alpha in optical red, relatively easy objects to identify spectroscopically, but fairly rare on the sky - 2dF survey ideal

- WFC, ESO mags for some fields – photo-z (Astrogrid VO tools), dropouts

- Supercosmos, Sloan correlations via AstroGrid, Vizier etc
Z=3.052 BLAGN

$F_X=5\times10^{-15}$ cgs, power law = 1.66, $N_H=10^{20}$

$B_j=22.46$

broad Lyb, Lya/NV/SiII + weak abs, broad CII

SiIV/OIV CIV [NIII] CIII]

with Pam Derry
Stacked BLAGN spectra

~100 ungrouped spectra >200cts (all EPIC)

z-corrected 0.1keV bins

Power law = 1.8

Normalisation – by flux or CR?

with
Pam Derry
Silvia Mateos
Mike Watson
Gordon Stewart
XID Imaging Programme

With McMahon, Yuan (IoA); Watson; Schwope (AIP)

80% IDs with INT WFC data

- multicolour optical data for 33/68 2dF XMM fields (WFC+ESO)
 - magnitudes, colours, morphology, redshifts
- 2 mag. deeper than SDSS (INT WFC $i' \approx 23^m$; SDSS $i' \approx 21^m$)
- photometric IDs for \sim1500 XMM sources!

Optical/IR 2 x 2 arcmin X-ray 6 x 6 arcmin
UKIDSS LAS and the XMM Serendipitous Catalogue

- Single UKIDSS Tile
 - 4 point mosaic
 - SV target L/T dwarf?

- XMM pointing on Abell 1750 cluster (redshift z=0.085)
UKIDSS LAS and the XMM Serendipitous Catalogue

- One 1XMM field ‘by chance’ overlapped with the UKIDSS LAS Science Verification observations
 - UKIDSS Target was a L/T dwarf
 - XMM target was Cluster Abell 1750 (z=0.075)
 - non-ideal XMM field but illustrative

- 50 sources with Fx>2x10-14cgs

- UKIDSS/SDSS Identification statistics
 - Search radius 5″; ~2sigma radius for 1XMM sources
 - 40 1XMM sources have ids in SDSS DR4 (id rate=80%)
 - Normal blank ‘field’ ID rate is 30% so maybe ids associated with cluster of galaxies
 - No ‘new’ UKIDSS LAS ids i.e. all SDSS blank fields were blank in LAS
 - 26 of SDSS ids have UKIDSS LAS detections (65%)

Conclusions:
LAS will provide YJHK photometry for 65% of 1XMM SDSS identifications
- 20% of all XMM sources in LAS

- 10% of all 2XMM sources will lie within LAS region(4000deg2) after 2yrs
 - Assuming 20% LAS ID rate
 - 2% of all XMM sources will have both SDSS and LAS photometry
 - 3000 sources from 2XMM catalogue
Summary

- **2dF ID >1000 sources brighter than** \(F_{0.5-4.5} > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \)
 - Homogeneous X-ray data reprocessing completed
 - Current public pipeline + test 2XMM
 - Characterise XRB source population
 - Optical multiband imaging complete for 1/2 fields (WFC, ESO...)
 - Opt mag dropouts?
 - 2 mags deeper than SDSS
 - Excellent statistical ID training sample

- **XMM serendipitous survey = WIDE coverage!**
 - Larger no of rare objects than deep, narrow surveys to date, e.g.
 - X-ray selected BAL QSOs => SDSS agreement?
 - High-z AGN