
to du = u̇ dt, with u̇ given by the equation of motion (in practice,
more sophisticated time integration schemes are used). The hard part
is finding the gravitational force, since this involves summation over
(N − 1) other particles each time we need a force for one particle.
All the craft in the field involves finding clever ways in which all the
forces can be evaluated in less than the raw O(N2) computations per
timestep. We will have to omit the details of this, unfortunately, but
one obvious way of proceeding is to solve Poisson’s equation on a
mesh using a Fast Fourier Transform. This can convert the O(N2)
time scaling to O(N lnN), which is a qualitative difference given that
N can be as large as 1010.

These non-linear effects boost the amplitude of the power
spectrum at small physical scales (large k scales) as can be seen in
Figure 17 . For cosmological observations we need to understand these
non-linear effects to high precision. This is one of the issues facing
modern day cosmology and non-linear effects can only be calculated
through large scale suites of HPC N-body simulations.

Figure 17. ΛCDM power spectrum normalised by
σ8 = 0.9. The linear power spectrum is show solid and
the non-linear power spectrum is shown dashed using
the fitting formula from Smith et al 2003.

press–schechter and the halo mass function N -body
models can yield evolved density fields that are nearly exact solutions
to the equations of motion, but working out what the results mean is
then more a question of data analysis than of deep insight. Where
possible, it is important to have analytic models that guide the
interpretation of the numerical results. Press & Schechter (1974) is
a key example of a theory which produces results that only slightly
differ from full numerical simulations.

Press-Schechter theory assumes that if we smooth the linear
density perturbations on some mass scale M , then the fraction of space
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in which the smoothed density field exceeds some critical threshold δc

(the critical overdensity for collapse) is in collapsed objects of
mass greater than M . If the density field is Gaussian, the probability
that a given point lies in a region with δ > δc is

p(δ > δc | R) =
1√

2π σ(R)

∫ ∞

δc

exp
(

−δ2/2σ2(R)
)

dδ, (201)

where σ(R) is the linear rms in the filtered version of δ. The
PS argument now takes this probability to be proportional to the
probability that a given point has ever been part of a collapsed object
of scale > R. This is really assuming that the only objects that exist at
a given epoch are those that have only just reached the δ = δc collapse
threshold; if a point has δ > δc for a given R, then it will have δ = δc

when filtered on some larger scale and will be counted as an object
of the larger scale. The problem with this argument is that half the
mass remains unaccounted for: PS therefore simply multiplying the
probability by a factor 2. This fudge can be given some justification,
but we just accept it for now. The fraction of the universe condensed
into objects with mass > M can then be written in the universal form

F (> M) =

√

2

π

∫ ∞

νc

exp(−ν2/2) dν, (202)

where νc = δc/σ(M) is the threshold in units of the rms density
fluctuation and M is the mass contained in a sphere of comoving radius
R in a homogeneous universe

M =
4π

3
ρ̄ R3. (203)

This is the linear-theory view, before the object has collapsed. We
define the mass function f(M) where f(M) dM is the comoving
number density of objects in the range dM . The probability of a
point in space forming as mass between M and M + dM is dF/dM ,
therefore;

Mf(M)/ρ0 = |dF/dM |, (204)

where ρ0 is the total comoving density. We can write this result in
terms of the multiplicity function, M2f(M)/ρ0,

M2f(M)

ρ0

=
dF

d lnM
=

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

√

2

π
ν exp

(

−ν2

2

)

. (205)

which is the fraction of the mass carried by objects in a unit range of
lnM .

Remarkably, given the dubious assumptions, this expression
matches very well to what is found in direct N-body calculations, when
these are analysed in order to pick out candidate haloes: connected
groups of particles with density about 200 times the mean. The PS
form is imperfect in detail, but the idea of a mass function that is
universal in terms of ν seems to hold, and a good approximation is

F (> ν) = (1 + a νb)−1 exp(−c ν2), (206)

where (a, b, c) = (1.529, 0.704, 0.412). Empirically, one can use
δc = 1.686 independent of the density parameter (see Section 15.8
in Peacock 1999 for the spherical model argument for the value of
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δc). A plot of the mass function according to this prescription is
given in figure 18, assuming what we believe to be the best values
for the cosmological parameters. This shows that the Press-Schechter
formula captures the main features of the evolution, even though it is
inaccurate in detail. We see that the richest clusters of galaxies, with
M ≃ 1015 h−1M⊙, are just coming into existence now, whereas at
z = 5 even a halo with the mass of the Milky Way, M ≃ 1012 h−1M⊙

was similarly rare. It can be seen that the abundance of low-mass
haloes declines with redshift, reflecting their destruction in the merging
processes that build up the large haloes.

Figure 18. The mass function in the form of
the multiplicity function: fraction of mass in the
universe found in virialized haloes per unit range in
lnM . The solid lines show a fitting formula to N -body
data and the dashed lines contrast the original Press-
Schechter formula.

7.1 A recipe for galaxy formation

Press-Schechter theory has an interesting consequence in the context
of the CDM model, where there is power on all scales: the sequence
of structure formation must be hierarchical. This means that we
expect the universe to fragment into low-mass clumps at high redshift,
following which a number of clumps merge into larger units at later
times. This process is controlled by the density variance as a function
of smoothing scale, σ2(R). In a hierarchical model, this increases
without limit as R → 0, so there is always a critical scale at which
σ ≃ 1. As the density fluctuations grow, this critical scale grows also.
These collapsed systems are known as dark-matter haloes. The
largest such haloes, forming today, are the rich clusters of galaxies.
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Since the appreciation in the 1970s that galaxies seemed to
be embedded in haloes of dark matter, it has been clear that one
should be able to construct an approximate theory for the assembly of
galaxies based on the assumption that everything is dominated by the
dark matter. Therefore, once we understand the history of the haloes,
we should be able to make plausible guesses about how the baryonic
material will behave. Over the years, this route has been followed
to the point where there now exists an elaborate apparatus known
as semianalytic galaxy formation. This is not yet a fully
satisfactory theory, in that it is not able to make robust predictions of
the properties that the galaxy population should have. However, it has
succeeded in illuminating the main issues that need to be understood
in a complete theory. In essence, semianalytic models include the
following elements:

Figure 19. An example of a merger tree for a halo
of M ≃ 1013 M⊙ at z = 0, from Helly et al. (2002).
The size of circle is proportional to halo mass, and the
leftmost panel shows the fraction of the total mass in
resolved progenitors (solid) and the mass of the largest
progenitor (dashed).

Merger trees. A halo that exists at a given time will have
been constructed by the merging of smaller fragments over time. We
need to be able to predict this history.

Fate of subhaloes. When haloes merge, they do not
instantly lose their identity. Their cores survive as distinct subhaloes
for some time. In group/cluster scale haloes, these will mark the
locations of the galaxies. In general, subhaloes will eventually merge
within the parent halo, and sink to the centre. Thus there is always
a tendency to have a dominant central galaxy (e.g. the Milky Way is
surrounded by the much smaller Magellanic Cloud dwarfs).

Accounting of gas and stars. The first generation of
haloes is assumed to start life with gas distributed along with the dark
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matter in the universal ratio Ωb/Ωdm. From the density of the gas, the
cooling rate can be calculated. Whatever gas reaches a temperature
below 104 K is deemed to be a reservoir of cold gas suitable for star
formation. Some empirical relation based on the amount and density
of this gas is then used to predict a star-formation rate. When haloes
merge, their contents of stars, cold gas, and hot gas are added.

Feedback. As we will show below, the above recipe fails
to match observation, as it predicts that stars should form most
efficiently in the smallest galaxies – so that a system of the size of
the Milky Way should be just a collection of globular clusters, rather
than predominately a giant gaseous disk. Therefore, the critical (and
so far unsolved) problem in galaxy formation is to make gas cool less
efficiently. The idea here is that energy is put back into the hot gas
as a result of the nonlinear events that happen inside galaxies. These
are principally of two kinds: supernova explosions and nuclear activity
around a central black hole.

virial temperature There is no time here to dig very deeply
into the component parts of this recipe, but a few points are worth
making. First consider the characteristic density of a virialized halo.
We have argued that this is some multiple fc ≃ 200 of the background
density at virialization (or ‘collapse’):

ρc = fc ρ0 (1 + zc)
3. (207)

The virialized potential energy for constant density is 3GM2/(5r),
where the radius satisfies 4πρcr

3/3 = M . This energy must equal
3MkT/(µmp), where µ = 0.59 for a plasma with 75% hydrogen by

mass. Hence, using ρ0 = 2.78 × 1011Ωmh2 M⊙Mpc−3, we obtain the
virial temperature:

Tvirial/K = 105.1(M/1012M⊙)2/3 (fcΩmh2)1/3 (1 + zc). (208)

This is an illuminating expression. It tells us that the most massive
systems forming today, with M ≃ 1015M⊙, will have temperatures of
107 – 108 K. The intergalactic medium in clusters is thus very hot,
and emits in X-rays. It also cools very inefficiently, since such hot
plasmas emit only bremsstrahlung. Conversely, pregalactic systems
with M <

∼
109M⊙ at z ≃ 10 have a virial temperature that is

barely at the level of 104 K required for ionization. Their gas is
thus predominately neutral, and should form stars with maximum
efficiency. This is the cooling paradox referred to above.

But the same formula allows us to see how to escape from the
paradox. The virial temperature is equivalent to a velocity dispersion,
which is essentially the velocity at which particles orbit in the dark-
matter potential well. This velocity therefore also gives the order
of magnitude of the escape velocity for the system. Haloes with
a virial temperature of only ∼ 104 K thus constitute very shallow
potential wells and will lose any of their gas that becomes heated to
>
∼

105 K. This is liable to happen as soon as any supernovae from the
first generation of star formation explode. For type II supernovae
associated with massive stars, this can be virtually instantaneous
(<
∼

107 years). Star formation in these early dwarf galaxies might well
be expected to be self-quenching. Indications that this process did
happen can be found when measuring HI rotation curves of dwarfs:
the typical baryon fraction is only about 1% (as opposed to something
close to the global 20% in clusters).
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