
11 The puzzle of dark energy

11.1 Cosmological effects of the vacuum

One of the most radical conclusions of recent cosmological research has
been the necessity for a non-zero vacuum density. This was detected
on the assumption that Einstein’s cosmological constant, Λ,
might contribute to the energy budget of the universe. But if this
ingredient is a reality, it raises many questions about the physical
origin of the vacuum energy; as we will see, a variety of models may
lead to something similar in effect to Λ, and the general term dark
energy is used to describe these.

The properties of dark energy can be probed by the same means
that we used to deduce its existence in the first place: via its effect on
the expansion history of the universe. The vacuum density is included
in the Friedmann equation, independent of the equation of state

Ṙ2 − 8πG

3
ρ R2 = −kc2. (318)

At the outset, then we should be very clear that the deduced existence
of dark energy depends on the correctness of the Friedmann equation,
and this is not guaranteed. Possibly we have the wrong theory of
gravity, and we have to replace the Friedmann equation by something
else. Alternative models do exist, particularly in the context of extra
dimensions, and these must be borne in mind. Nevertheless, as
a practical framework, it makes sense to stick with the Friedmann
equation and see if we can get consistent results. If this programme
fails, we may be led in the direction of more radical change.

To insert vacuum energy into the Friedmann equation, we need
the equation of state

w ≡ p/ρ c2 (319)

If this is constant, adiabatic expansion of the vacuum gives

8πGρ

3H2
0

= Ωva−3(w+1). (320)

More generally, we can allow w to vary; in this case, we should regard
−3(w + 1) as d ln ρ/d ln a, so that

8πGρ

3H2
0

= Ωv exp

(
∫

−3(w(a) + 1) d ln a

)

. (321)

In general, we therefore need

H2(a) = H2
0

[

Ωve
∫

−3(w(a)+1) d ln a + Ωma−3 + Ωra
−4 − (Ω − 1)a−2

]

. (322)

Some complete dynamical model is needed to calculate w(a). Given
the lack of a unique model, a common empirical parameterization is

w(a) = w0 + wa(1 − a). (323)

Frequently it is sufficient to stick with constant w; most experiments
are sensitive to w at a particular redshift of order unity, and w at this
redshift can be estimated with little dependence on whether we allow
dw/dz to be non-zero.
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If w is negative at all, this leads to models that become
progressively more vacuum-dominated as time goes by. When this
process is complete, the scale factor should vary as a power of time.
The case w < −1 is particularly interesting, sometimes known as
phantom dark energy. Here the vacuum energy density will
eventually diverge, which has two consequences: this singularity
happens in a finite time, rather than asymptotically; as it does so,
vacuum repulsion will overcome the normal electromagnetic binding
force of matter, so that all objects will be torn apart in the big
rip. Integrating the Friedmann equation forward, ignoring the current
matter density, the time to this event is

trip − t0 ' 2

3
H−1

0 |1 + w|−1(1 − Ωm)−1/2. (324)

observable effects of the vacuum The comoving distance-
redshift relation is one of the chief diagnostics of w. The general defi-
nition is

D ≡ R0r =

∫ z

0

c

H(z)
dz. (325)

Perturbing this about a fiducial Ωm = 0.25 w = −1 model shows a
sensitivity multiplier of about 5 – i.e. a measurement of w to
10% requires D to 2%. Also, there is a near-perfect degeneracy with
Ωm, so this parameter must be known very well before the effect of
varying w becomes detectable.

The other main diagnostic of w is its effect on the growth of
density perturbations. These are also sensitive to the vacuum, as may
be seen from the growth equation:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ0δ. (326)

The vacuum energy manifests itself in the factor of H in the ‘Hubble
drag’ term 2(ȧ/a)δ̇. For flat models with w = −1, we have seen
that the growing mode for density perturbations is approximately as
g(a) ∝ aΩ(a)0.23. If w is made more negative, this makes the growth
law closer to the Einstein–de Sitter g(a) ∝ a (for very large negative
w, the vacuum was unimportant until very recently). Therefore,
increasing w (making it less negative) has an effect in the same sense
as decreasing Ωm. As shown in figure 28, the degeneracy between
variations in Ωm and w thus has the opposite sign to the degeneracy
in D(z). Ideally, one would therefore try to observe both effects.

11.2 Observing the properties of dark energy

What are the best ways to measure w? We have seen that the two
main signatures are alterations to the distance-redshift relation and
the perturbation growth rate. It is possible to use both of these effects
in the framework we have been discussing: observing the perturbed
universe in both the CMB and large-scale structure.

In the CMB, the main observable is the angle subtended by the
horizon at last scattering

θH = D(zLS)/D(z = 0). (327)
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Figure 28. Perturbation around Ωm = 0.25 of
distance-redshift and growth-redshift relations. Solid
line shows the effect of increase in w; dashed line the
effect of increase in Ωm

This has the approximate scaling with cosmological parameters (for a
flat universe)

θH ∝ (Ωmh3.3)0.15Ωα−0.4
m ; α(w) = −2w/(1 − 3.8w). (328)

The latter term comes from a convenient approximation for the current
horizon size:

D0 = 2
c

H0
Ω−α(w)

m . (329)

At first sight, this looks bad: the single observable of the horizon angle
depends on three parameters (four, if we permit curvature). Thus,
even in a flat model, we can only pin down w if we know both Ωm and
h.
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However, if we have more detail on the CMB than just the main
peak location, then we have seen that the Ωm−h degeneracy is weakly
broken, and that this situation improves with information from large-
scale structure, which yields an estimate of Ωmh. In effect, we have
two constraints on the Ωm − h plane that are consistent if w = −1,
but this is not the case for other values of w. In this way, the current
combined constraints from CMB plus alternative probes (LSS and the
Supernova Hubble diagram) yield an impressive accuracy:

w = −0.926+0.054
−0.053, (330)

for a spatially flat model – see Spergel et al. (2006). The confidence
contours are plotted in detail in figure 29, and it is clear that so far
there is very good consistency with a simple cosmological constant.
But as we will see, plenty of models exist in which some deviation
is predicted. The next goal of the global cosmology community is
therefore to push the errors on w down substantially – to about 1%.
There is no guarantee that this will yield any signal, but certainly it
will cut down the range of viable models for dark energy.

Figure 29. The marginalized WMAP3 confidence
contours on the plane of dark-energy equation of state
(w) vs Ωm (from Spergel et al. 2006). A flat universe is
assumed, although this is not critical to the conclusions.
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One of the future tools for improving the accuracy in w will
be large-scale structure. We have seen how this helps pin down the
parameter degeneracies inherent in a CMB-only analysis, but it also
contains unique information from the acoustic horizon. Earlier, we
approximated this without considering how the speed of sound would
depend on the baryon density; a good approximation to the exact
result is

Da ' 60 (Ωmh2)−0.25(Ωbh
2)−0.08 Mpc. (331)

This forms a standard measuring rod, as seen in the ‘baryon wiggles’
in the galaxy power spectrum. In future galaxy surveys, the
measurement of this signature as a function of redshift will be a further
useful geometrical probe.

The amplitude constraint from the CMB has been harder to
implement. Although WMAP provides an accurately determined nor-
malization, it involves the uncertain optical depth due to reionization:

σ8(CMB) = 0.75(Ωm/0.3)+0.4 exp(τ) ± 4%. (332)

The value of τ is constrained by large-angle polarization data, and
lies close to 0.1 according to WMAP. The current accuracy would be
useful if we had an accurate independent estimate of σ8. This can
be attempted using the abundance of clusters of galaxies and also
gravitational lensing, although the test is not really properly mature
as yet.

11.3 Quintessence

The simplest physical model for dynamical vacuum energy is a
scalar field. We know from inflationary models that this can yield
something close in properties to a cosmological constant, and so we
can immediately borrow the whole apparatus for modelling vacuum
energy at late times. This idea of scalar fields as a dynamical subsitute
for Λ was first explored by Ratra & Peebles (1988). Of course, this
means yet another scalar field that is introduced without much or
any motivation from fundamental physics. This hypothetical field is
given the fanciful name ‘quintessence’, implying a new addition to the
ancient Greek list of elements (fire, air, earth, water).

The Lagrangian density for a scalar field is as usual of the form
of a kinetic minus a potential term:

L = 1
2∂µφ∂µφ − V (φ). (333)

In familiar examples of quantum fields, the potential would be

V (φ) = 1
2 m2 φ2, (334)

where m is the mass of the field. However, as before we keep the
potential function general at this stage.

Suppose the Lagrangian has no explicit dependence on space-
time (i.e. it depends on xµ only implicitly through the fields and their
4-derivatives). Noether’s theorem then gives the energy–momentum
tensor for the field as

Tµν = ∂µφ∂νφ − gµνL. (335)

105



From this, we can read off the energy density and pressure:

ρ = 1
2 φ̇2 + V (φ) + 1

2 (∇φ)2

p = 1
2 φ̇2 − V (φ) − 1

6 (∇φ)2.
(336)

If the field is constant both spatially and temporally, the equation
of state is then p = −ρ, as required if the scalar field is to act as
a cosmological constant; note that derivatives of the field spoil this
identification.

For a homogeneous field, we have the equation of motion

φ̈ + 3Hφ̇ + dV/dφ = 0, (337)

which is most easily derived via energy conservation:

d ln ρ

d ln a
= −3(1 + w) = −3φ̇2/(φ̇2/2 + V ), (338)

following which the relations H = d ln a/dt and V̇ = φ̇V ′ can be used
to change variables to t, and the damped oscillator equation for φ
follows. The solution of the equation of motion becomes tractable if
we make the slow-rolling approximation that |φ̈| is negligible

in comparison with |3Hφ̇| and |dV/dφ|, so that

3Hφ̇ = −dV/dφ. (339)

From this, we know that a sufficiently flat potential can provide a
dynamical vacuum that is arbitrarily close to a cosmological constant
in its equation of state. However, there are good reasons why we might
want to imagine the slow-roll conditions being violated in the case of
dark energy.

cosmic coincidence and quintessence Accepting the real-
ity of vacuum energy raises a difficult question. If the universe contains
a constant vacuum density and normal matter with ρ ∝ a−3, there is
a unique epoch at which these two contributions cross over, and we
seem to be living near to that time. This coincidence calls for some
explanation.

We already have one coincidence, in that we live relatively close
in time to the era of matter-radiation equality (z ∼ 103, as opposed
to z ∼ 1028 for the GUT era). This is relatively simple to understand:
structure formation cannot begin until after zeq, and so we would
expect observers to appear before the universe has expanded much
beyond this point. The vacuum coincidence problem could therefore
be solved if the vacuum density was some dynamical entity that was
triggered to become Λ-like by the change in expansion history at zeq.
Zlatev, Wang & Steinhardt (1999) suggested how this might happen.
We have seen that the density and pressure for a quintessence field
will be

ρφ = φ̇2/2 + V

pφ = φ̇2/2 − V.
(340)

This gives us two extreme equations of state: (i) vacuum-dominated,

with V � φ̇2/2, so that p = −ρ; (ii) kinetic-dominated, with

V � φ̇2/2, so that p = ρ. In the first case, we know that ρ does
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not alter as the universe expands, so the vacuum rapidly tends to
dominate over normal matter. In the second case, the equation of
state is the unusual Γ = 2, so we get the rapid behaviour ρ ∝ a−6.
If a quintessence-dominated universe starts off with a large kinetic
term relative to the potential, it may seem that things should always
evolve in the direction of being potential-dominated. However, this
ignores the detailed dynamics of the situation: for a suitable choice of
potential, it is possible to have a tracker field, in which the kinetic
and potential terms remain in a constant proportion, so that we can
have ρ ∝ a−α, where α can be anything we choose.

Putting this condition in the equation of motion shows that
the potential is required to be exponential in form. The Friedmann
equation with ρ ∝ a−α requires a ∝ t2/α, so we have ρ ∝ t−2 as usual.
But now both V and φ̇2 must scale in the same way as ρ, so that
φ̇ ∝ 1/t. Both the φ̈ and 3Hφ̇ terms are therefore proportional to
V , so an exponential potential solves the equation of motion. More
importantly, we can generalize to the case where the universe contains
scalar field and ordinary matter. Suppose the latter obeys ρm ∝ a−α;
it is then possible to have the scalar-field density obeying the same
ρ ∝ a−α law, provided

V (φ) ∝ exp[−λφ/M ], (341)

where M = mP/
√

8π. The scalar-field density is ρφ = (α/λ2)ρtotal.
The impressive thing about this solution is that the quintessence
density stays a fixed fraction of the total, whatever the overall equation
of state: it automatically scales as a−4 at early times, switching to a−3

after matter-radiation equality.

This is not quite what we need, but it shows how the effect
of the overall equation of state can affect the rolling field. Because
of the 3Hφ̇ term in the equation of motion, φ ‘knows’ whether or
not the universe is matter dominated. This suggests that a more
complicated potential than the exponential may allow the arrival of
matter domination to trigger the desired Λ-like behaviour. Zlatev,
Wang & Steinhardt suggested two potentials which might achieve this:

V (φ) = M4+βφ−β or V(φ) = M4[exp(mP/φ) − 1]. (342)

They show that these can yield an evolution in w(t) so that it switches
from w ' 1/3 in the radiation era to w ' −1 today.

However, a degree of fine-tuning is still required, in that the
trick only works for M ∼ 1 meV, so there is no natural reason for
tracking to cease at matter-radiation equality. The idea of tracker
fields thus does not remove completely the puzzle concerning the level
of present-day vacuum energy. But such models are at least testable:
because the Λ-like behaviour only switches on quite recently, it is hard
to complete the transition, and the prediction is of something around
w ' −0.8 today. As we have seen, this can be firmly ruled out with
current data. These ideas about the dynamical vacuum are therefore
already interesting testable science.

k-essence In a sense, quintessence is only half the story. We
started with the usual Lagrangian for a simple massive scalar field,
L = φ̇2/2 − m2φ2/2 and generalized the quadratic mass term to an
arbitrary potential, V (φ). Why not take the same liberties with the
kinetic term? Even though such k-essence models lack the intuitive
analogies of quintessence, a Lagrangian can be anything we like. The
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simplest models try to express things in terms of the normal kinetic
expression

X ≡ ∂µφ∂µφ/2, (343)

and one assumes that

L = K(φ)f(X) (344)

In the homogeneous case, X = φ̇2/2.

The pressure and density are

ρ = 2XL,X − L
P = L

(345)

so that the equation of state is

w =
f

2Xdf/dX − f
. (346)

For a normal kinetic term, this gives w = +1 if there is no potential.
The equation of motion is derived just by writing conservation of
energy as for quintessence:

d ln ρ

d ln a
= −3(1 + w). (347)

What sort of k-essence Lagrangian will yield tracking? We want
to fix w at the value of the dominant component, which requires

d ln f

d lnX
= (1 + 1/w)/2 ⇒ f(X) ∝ X(1+1/w)/2. (348)

Thus, a Lagrangian proportional to the square of the usual kinetic
term will produce tracking during the radiation era, but tracking in the
matter era requires a step to f(X) = 0 to be encountered just as the
universe becomes matter dominated. This is the opposite to the case of
quintessence: now fine-tuning would be required in order for tracking
to be maintained. The real question is whether a simple model can
achieve sufficiently strong departure from tracking to get somewhere
close to w = −1 in the matter era in an inevitable way. This
seems to be controversial: Armendariz-Picon, Mukhanov & Steinhardt
(0006373) claimed that it could be done, but Malquarti, Copeland &
Liddle (0304277) disagreed. The issue, as with quintessence, is the
extent to which a tracking solution arises inevitably independent of
initial conditions – i.e. whether it is an attractor. This has certainly
not been demonstrated.

perturbations in the vacuum In dynamical models for the
vacuum, we have a peculiar kind of fluid, so it is able to respond
to gravity and grow inhomogeneities. The key parameter here is the
vacuum sound speed, which obeys the usual relation

c2
s =

∂p

∂ρ
. (349)
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In practice, this is evaluated as

c2
s =

∂p/∂X

∂ρ/∂X
(350)

i.e. ignoring perturbations in the field. The justification for this is that
a gauge freedom exists, and that δφ = 0 corresponds to the rest-frame
of the vacuum fluid.

This means that, for quintessence, the sound speed is always
cs = c. Even a completely flat potential with initial condition φ̇ = 0
does not mimic a cosmological constant. This only happens if the
Lagrangian is set up completely lacking any kinetic term. The low
sound speeds in some k-essence models can have quite large effects on
the CMB anisotropies, and so can be probed observationally beyond
just w and its evolution.

11.4 The anthropic approach

Whether or not one finds the ‘essence’ approach compelling, there
remains one big problem. All the models are constructed using
Lagrangians with a particular zero level. All quintessence potentials
tend to zero for large fields, and k-essence models lack a potential
altogether. They are therefore subject to the classical dilemma of the
cosmological constant: adding a pure constant to the Lagrangian has
no affect on field dynamics, but mimics a cosmological constant. With
so many possible contributions to this vacuum energy from the zero-
point energies of different fields (if nothing else), it seems contrived to
force V (φ) to asymptote to zero without a reason.

This leads us in the direction of anthropic arguments, which are
able to limit Λ to some extent: if the universe had become vacuum-
dominated at z > 1000, gravitational instability would have been
impossible – so that galaxies, stars and observers would not have been
possible (Weinberg 1989). Indeed, Weinberg made the astonishingly
prescient prediction on this basis that a non-zero vacuum density
would be detected at Ωv of order unity, since there was no reason
for it to be much smaller.

many universes At first sight, this argument seems quite
appealing, but it rapidly leads us into deep waters. How can we talk
about changing Λ? It has the value that it has. We are implicitly
invoking an ensemble picture in which there are many universes
with differing properties. This is a big step (although exciting, if this
turns out to be the only way to explain the vacuum level we see). In
fact, the idea of an ensemble emerges inevitably from the framework
of inflationary cosmology, since the fluctuations in the scalar field can
affect the progress of inflation itself. We have used this idea to look
at the changes in when inflation ends – but fluctuations can affect the
field at all stages of its evolution. They can be thought of as adding
a random-walk element to the classical rolling of the scalar field down
the trough defined by V (φ). In cases where φ is too close to the
origin for inflation to persist for sufficiently long, it is possible for the
quantum fluctuations to push φ further out – creating further inflation
in a self-sustaining process. This is the concept of stochastic
eternal inflation due to Linde. Sufficiently far from the origin,
the random walk effect of fluctuations becomes more marked and can
overwhelm the classical downhill rolling. This means that some regions
of space can inflate for an indefinite time, and a single inflating universe
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automatically breaks up into different bubbles with their own histories.
Some random subset of these eventually random-walk close enough to
the origin that the classical end of inflation can occur, thus creating a
set of ‘universes’ each of which can potentially host observers.

With this as a starting point, the question now becomes
whether we can arrange for the different members of this ensemble
to have different values of Λ. This is easily achieved. Let there be
some quintessence field with a very flat potential, so that it is capable
of simulating Λ effectively. Quantum fluctuations during inflation can
also displace this field, so that each member of the multiverse would
have a different Λ.

the distribution of Λ We are now almost in a position to
calculate a probability distribution for Λ. First, we have to set some
ground rules: what will vary and what will be held fixed? We should
try to change as little as possible, so we assume that all universes have
the same values for

(1) The Baryon fraction fb = ρb/ρm.

(2) The entropy per particle S = (T/2.73)3/Ωmh2

(3) The horizon-scale inhomogeneity δH ' 10−5.

It is far from clear that these minimal assumptions are
correct. For example, string theorists have evolved the notion of the
landscape, in which there is no unique form for low-energy particle
physics, but instead a large number of possibilities in which numbers
such as the fine-structure constant, neutrino masses etc. are different.
From the point of view of understanding Λ, we need there to be at
least 10100 possible states so that at least some have Λ smaller than the
natural m4

p
density by a sufficient factor. The landscape hypothesis

really took off in 2001, when this number was first shown to be about
10500. But to start with, the simplest approach makes sense: if the
simplest forms of anthropic variation can be ruled out, this might be
taken as evidence in favour of the landscape picture.

We then take a Bayesian viewpoint to the distribution of Λ
given the existence of observers:

P (Λ | Observer) ∝ Pprior(Λ)P (Observer | Λ), (351)

where we need both the prior distribution of Λ between different
members of the ensemble and how the chance of getting an observer is
modified by Λ. The latter factor should be proportional to the number
of stars, which is generally take to be proportional to the fraction of
the baryons that are incorporated into nonlinear structures. We can
estimate this using the Press-Schechter apparatus to get the collapse
fraction into systems of a galaxy-scale mass. The exact definition of
this is not very important, since the CDM power spectrum is very flat
on small scales: any mass at all close to 1012 M� gives similar answers.

The more difficult part is the prior distribution of Λ, and a
common argument is to say that it has a uniform distribution – which
seems reasonable enough if we are to allow it to have either sign,
but know that we will be interested in a very small range near zero.
This is the startling proposition of the anthropic model: the vacuum
density takes large ranges, and in almost all realizations, the values
are comparable in magnitude to the natural scale m4

P
; such models are

stupedously inimical to life.
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We therefore have the simple model

dP (ρv) ∝ fc dρv, (352)

where fc is the collapse fraction into galaxy-scale objects. For large
values of Λ, growth ceases at high redshift, and fc is exponentially
suppressed. But things are less clear-cut if Λ < 0. Here the universe
eventually recollapses, and the high density means that the collapse
fraction always tends to unity. So why do we not observe Λ < 0?
The answer is that we have to cut off the calculation at late stages of
recollapse: once the universe becomes too hot, star-formation may be
affected and in any case there is little time for life to form.

With this proviso, figure 30 shows the posterior distribution
of Λ conditional on the existence of observers in the multiverse. We
express things in natural units: if we adopt the values Ωv = 0.75 and
h = 0.73 for the key cosmological parameters, then

ρv = 7.51 × 10−27 kg m−3 =
h̄

c

(

Ev

h̄c

)4

, (353)

where Ev = 2.39 meV is known to a tolerance of about 1 %. Provided
we consider recollapse only to a maximum temperature of about 10
K, the observed figure is matched well by the anthropic prediction:
with this cutoff, most observers will see a positive Λ, and something
of order 10% of observers will see Λ as big as we do, or smaller.

Figure 30. The collapse fraction as a function
of the vacuum density, which is assumed to give the
relative weighting of different models. The dashed line
for negative density corresponds to the expanding phase
only, whereas the solid lines for negative density include
the recollapse phase, up to maximum temperatures of
10 K, 20 K, 30 K.
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So is the anthropic explanation the correct one? Many people
find the hypothesis too radical: why postulate an infinity of universes
in order to explain a detail of one of them? Certainly, if an alternative
explanation for the ‘why now’ problem existed in the form of e.g. a
naturally successful quintessence model, one might tend to prefer that.
But so far, there is no such alternative. The longer this situation
persists, the more we will be forced to accept that the universe we see
can only be understood by making proper allowance for our role as
observers.
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