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Abstract

The next generation of radio telescopes, such as LOFAR, e-Merlin, ASKAP, MeerKat and even-
tually the SKA promise to open up the radio frequency range to unprecedented depth. Radio
observations are highly relevant to almost every area of astrophysical study, yet the analysis of inter-
ferometric data is still perceived as being a specialised skill. In this seminar, I will introduce the basic
concepts behind radio interferometry and aperture synthesis imaging, and latterly, the Measurement
Equation formalism, currently being implemented in the next generation of radio interferometry data
reduction software.

School of Physics and Astronomy Date: 05-03-10



Radio Interferometry & The Measurement Equation - 2

Contents

1 Introduction 3

2 Why Interferometry? 3

3 Some Basic Physics, and a Picture Based Introduction 4

3.1 A Small Aside: Fourier Transforming Cats . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The Radio Interferometry Problem: The Classical View 8

5 Spatial Coherence 10

5.1 Aperture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Primary Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Calibration and Editing 13

6.1 Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 In Practice 14

8 The Measurement Equation 14

School of Physics and Astronomy Date: 05-03-10



Radio Interferometry & The Measurement Equation - 3

1 Introduction

Radio interferometers constitute some of the world’s most iconic telescopes, but the principles behind
their operation are very different to those of a traditional single dish instrument. In this seminar, I will
give the ‘classical’ introduction to radio interferometry, outlining the relevant maths and assumptions
needed in analysing and imaging data from antenna array interferometers such as the VLA and GMRT.
In the latter half I will introduce ‘The Measurement Equation’, a mathematically complete description
of what is actually measured with any interferometer first introduced by Hamaker et al. (1996), and
explain why this is basis is now essential for the next generation of new software based radio telescopes.

2 Why Interferometry?

To answer this, it is helpful to return to the basic requirements for any instrument used to observe
astronomical sources at any wavelength. Good resolution and accurate intensity values, in other words,
good signal to noise measures are essential for any science. An optical telescope measures the number of
photons collected, and hence the signal to noise achievable depends on the diameter of the dish. A radio
receiver measures the voltage induced by the radio signal received, and again, the wider the collecting
area, the stronger the signal. Looking at the resolution however, classical optical diffraction theory limits
the angular resolution achievable by a single dish telescope to

θ ∼ λ

D
(1)

where λ is the wavelength of the radiation received, and D is the diameter of the telescope. In the optical,
a 6m dish provides ∼0.025 arcsec resolution (although in practice atmospheric seeing limits this), however
a single radio dish observing at at low frequencies can achieve at best only a few arcminutes resolution.
For example, the FAST telescope currently being built in China, will be the largest single dish radio
telescope in the world with a 500m dish diameter, and yet will only achieve a resolution of ∼2 arcminutes
in the L band, (Zhao, 2009). Much of the desired science in radio astronomy relies on obtaining radio
source positions with enough precision to enable cross-matching with data at other wavelengths. It was
this initial poor resolution able to be achieved by the largest single dish long wavelength radio telescopes,
that provided the initial motivation behind the development of radio interferometry.

The very basic key concept behind an interferometer is that one can link many single radio dishes together,
combining the signal received at each, and effectively simulating a large single radio telescope dish, with
a diameter equivalent to the largest distance (baseline) between the smaller dishes.
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3 Some Basic Physics, and a Picture Based Introduction

Going back to the very beginning, a reminder of the experiment which first proved the wave nature of
light, Young’s Slits. A monochromatic source of light passing through two slits will diffract, and produce
a fringe pattern of maxima and minima, an angular distance λ/d apart. The phase difference between
waves will change as the path lengths taken vary, giving rise to the constructive & destructive interference
seen on the viewing screen.

Figure 1: The Young’s Slits experiment illustrated. Diagram credit Neal Jackson, (Jackson, 2004). Panel a)
shows the basic experiment. b) What happens when the light source size increases? An angular shift in source
position one way shifts the fringe patterns by the same amount the other. As the fringes come from a group of
mutually incoherent sources, the intensity patterns add giving a reduced visibility. Panel c) shows what happens
when the size of the source reaches λ/d, the fringes add to give zero visibility. Finally panel d) Shows that if the
distance between the two slits is reduced, the same size of source is still able to give visible fringes.

Interferometers use exactly the same concept. First consider the simplest interferometer, composed
of two antennas, as illustrated in figure 2. Everything we can learn about a source in the sky comes
from the distribution of it’s electric field. Each antenna measures a different part of the wavefront
arriving from the source. The signals from each antenna are cross-correlated, and analogous to the
Young’s slits experiments above, depending on the path taken and the distance between the antennas,
the interferometer output will either be constructive or destructive. If we add in the Earth’s rotation
to this picture, one can imagine a source moving through the interferometer beam, giving positive and
negative output, and producing a fringe pattern as in figures 3 and 4.
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Figure 2: A very simple two element antenna interferometer. Image credit: David Brodrick, fringes.org

Figure 3: An illustration of the output of an interferometer. Green showing constructive interference, red
destructive. The graph below is the output ’fringe pattern’, more lobes appear when the baseline is longer.
Image credit:David Brodrick, fringes.org
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One obvious application of this fringe pattern, is to measure accurate radio source positions, and indeed
this is what the very first interferometers were used for. It is also straightforward to measure the size
of a source, by extending the size of the baseline until a weaker signal is received. This occurs when
the angular size of the source becomes comparable to the distance between positive and negative lobes
(see figure 4), which we know. Observations of extragalactic sources are made very much easier by this
property, in that Galactic diffuse radio emission is generally ‘resolved out’ allowing background sources to
appear. Some further useful properties of an interferometer include the fact that any internal instrument
noise common to one antenna will not be present in the cross correlated signal, as noise is generally not
coherent.

Figure 4: An illustration of how differing baseline length allows the interferometer to see different sized sources.
Left is a short baseline, right a long baseline. For the short, as the galaxy moves through the beam it will either
occupy a positive or negative lobe. However for the long, regardless of where the source is on the sky it will occupy
both positive and negative lobes, and will not give a strong signal with the interferometer. In interferometry
jargon, the source has become ‘resolved’. Image credit:David Brodrick, fringes.org

Figure 5 plots the intensity vs angular distance, visibility vs baseline length for a source. These two
values, the intensity and the visibility are a Fourier Transform pair, and from the measured visibilities
across an area of sky, we can derive the intensities.
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Figure 5: Relation between source brightness as a function of angular distance and visibility of interference
fringes as a function of baseline length.Image credit: Neal Jackson, (Jackson, 2004).

3.1 A Small Aside: Fourier Transforming Cats

So far, the basic outputs of an interferometer have been discussed, but how does one go about making
images from interferometric visibilities, and understanding them? For the maths, see the next section.
For now lets have a think about Fourier transforming images. Visibilities are complex values, and so
have an amplitude and a phase associated with each one. How do these contribute in the image plane?
Very simply, the amplitude of a visibility affects the measured intensity in the image plane, and the
phase, the position of the emission in the image plane.1

1The Virtual Radio Interferometer at http://www.merlin.ac.uk/nam/vri.html is a good way of visualising imaging and
Fourier transforms in practice.

School of Physics and Astronomy Date: 05-03-10



Radio Interferometry & The Measurement Equation - 8

Figure 6: What really happens when you Fourier transform a cat. Image Credit Keith Cowtan http://www.

ysbl.york.ac.uk/~cowtan/fourier/magic.html

Figure 7: Illustrating the effect of amplitude and phase of visibilities in the image plane, namely that the phase
describes the source structure and position. Top left, the fourier transformed image composed of the amplitudes
of the duck and the phases of the cat. Inverse Fourier transform this and we get the image on the top right.
Similarly for the bottom panels, this time using the phases of the duck and the amplitudes of the cat. Image
Credit Keith Cowtan http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html

4 The Radio Interferometry Problem: The Classical View

In this next section, I will give a more rigorous summary of the ’classical’ radio interferometry problem,
the first principles behind the major interferometers in use today, such as the VLA, GMRT, WSRT
and ATCA. Figure 8a) illustrates the basic problem we want to solve. How do we relate the signal
measured by the interferometer, to the full electric field distribution on the sky? Detailed coverage of the
underlying physics is given in many widely available texts, for example Thompson.(1986), Taylor.(1999),
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Figure 8: The Radio Interferometry Problem Illustrated. a) illustrates the basic problem, whereby an astro-
nomical source emits radiation, and a time variable electric field E(R,t) is measured at two different points in
domain M. O denotes the origin of the coordinate system used. b)Denotes the common coordinate system used
in interferometric measurements. Image Credit: (Carozzi and Woan, 2008)

and Rohlfs.(2000) and I utilise these to compile a summary of the principles of radio interferometry
relevant to this seminar. 2 . In order to simplify the theoretical background and give a more concise
introduction, I introduce some simplifying assumptions, following a similar approach to Chapter 1, in
Taylor.(1999).

• The Electric field E is non time varying over short intervals. This will be generally true for most
astrophysical sources of interest,e.g supernova remnants, radio galaxies in which the signal does
not vary over observational timescales of hours, but obviously not so for highly variable sources
such as pulsars. However it allows the basic physical concepts to be illustrated.

• Polarisation is ignored, and therefore the measured electric field is treated as a scalar quantity,
again for simplification.

• The sources of interest are so far away as to be only measurable in two dimensions, or their ’surface
brightness’.

• The space in between the source and the observer is empty, and that therefore the propagation of
the Electric field through the vacuum is linear and can be described by Maxwell’s equations in a
vacuum.

2I would also like to acknowledge here the presentations and notes obtained from a summer school in Synthesis Imaging,
held at ATNF Narrabri in October 2008, which were very helpful in aiding my understanding of radio interferometry and
were invaluable in explaining some of the key concepts presented here
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Classic electromagnetism theory gives the form of an electric field in a vacuum as

E(t) =
∫ ∞

0

E(ν)ei[φ(ν)−2πνt]dν (2)

If the coefficient E(ν) has a form which limits the range of frequency to an interval δν such that

δν/ν̄ << 1 (3)

where δν is the mean frequency then the signal is said to be quasi-monochromatic (K. Rohlfs, 2000),
which is what is measured in reality, a signal over some small but finite bandwidth. So, applying the
no short term time variability assumption to the quasi-monochromatic measurement of the electric field
emitted by our source, E(R,t), it is possible to express the electric field as Fourier series and utilise only
the Fourier coefficients, rather than the full time varying wavefunction, as representative of the electric
field at R, Eν(R).

Maxwell’s equations for radiation propagating in a vacuum allow the determination of the electric field
at location r, in the form of a Green’s function solution

Eν(r =
∫ ∫ ∫

Pν(R,r)Eν(R)dxdydz (4)

where Pν(R,r) is the propagator function which indicates how the source electric field affects the electric
field measured at r. By considering the electric field as a scalar, or in only one direction, this equation
is simplified, and the assumption that that the space between the observer and source is empty is also
applied. We also need to consider that the sources observed are so far away, that we can only make
surface brightness measurements. For this reason, Taylor et al (1999) define a third electric field, εν(R),
as the electric field distribution on a giant celestial sphere of radius the absolute magnitude of R. This
gives us that the electric field measured at r is,

Eν(r) =
∫

εν(R)
e2πiν|R-r|/c

|R− r| dS (5)

where dS is an element of surface area on the celestial sphere. This is then the electric field measured
by the observer at r due to all sources of cosmic electromagnetic radiation.

5 Spatial Coherence

The simplest two element interferometer, see figure 9, measures the voltage induced by the electric field
at two points, r1 and r2, and then proceeds to correlate the signals. The correlation is defined as the
expectation value of the product of the two electric fields:

Vν(r1, r2) = 〈Eν(r1)E∗ν(r2)〉 (6)

Substituting in equation 5, writing s =R/‖R‖, and Iν((s)) for the observed intensity and finally making
the assumption that the radiation from two different points of the source is uncorrelated, the following
expression, the spatial coherence function, is obtained:

Vν(r1, r2) ∼
∫

Iν(s)e−2πiνs.(r1−r2)/cdΩ (7)

This quantity is what a single baseline of an interferometer measures (via induced voltages), and is
invertible, in other words, given the spatial coherence function, we can obtain the observed intensity.

Choosing a set of coordinates wisely means that the spatial coherence function may be written in the form
of a Fourier transform. If the coordinate system is chosen to be in a plane, we can write the separation
vector in terms of the wavelength r1-r2= λ(u,v,w), with the components of s as (l,m,

√
1− l2 −m2). Re-

writing the coherence function in this coordinate system shows that the coherence function Vν(u,v,w=0)
and the modified intensity Iν(l,m)/

√
1− l2 −m2 are a Fourier transform pair.
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Figure 9: A Simple Two Element Interferometer. As shown by the figure, a wavefront from a source will arrive
at a different time at each of the antennas. A correction is applied by the receivers for this geometrical time
delay. Image Credit: (Thompson, 1986)

If we then assume that we are looking at a small portion of the sky, in other words, a particular source,
we can write s=s0+σ, where s0 points from the antenna to the ‘phase tracking centre’, with the vector
σ describing all nearby points on the sky, perpendicular to s0. This gives;

Vν(u, v) =
∫ ∫

Iν(l, m)e−2πi(ul+vm)dldm (8)

If geometrical delays are accounted for, see figure 9, then any phase difference relative to the phase
tracking centre measured by the interferometer will be due to light from different parts of the source
reaching the antennas at different times, giving a fringe pattern, and allowing source positions to be
measured.

5.1 Aperture Synthesis

Each visibility measured is unique to a particular baseline length and orientation. In order to sample the
entire u-v plane in the most uniform way, we require as many different baselines lengths and orientation
with respect to the sky as possible. Aperture synthesis is the process by which we take advantage of the
Earth’s rotation to change orientations of baselines with respect to the sky, and hence sample the u-v
plane more completely, as illustrated in figure 10.
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Figure 10: Aperture Synthesis Illustrated. This simple diagram illustrates how the U-V plane is sampled
as the Earth rotates. Figure based on one included in the GMRT LFRA notes, available online at http:

//gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/

5.2 Primary Beam

In practice, two other effects must be accounted for when measuring the spatial coherence function
V. Firstly the antenna reception pattern, or ‘primary beam’. This is a factor Aν(s) which effectively
describes the sensitivity of the interferometer element with radius from the centre of the dish beam. The
expression for spatial coherence then becomes;

Vν(u, v) =
∫ ∫

Aν(l, m)Iν(l, m)e−2πi(ul+vm)dldm (9)

Vν(u,v) defined in this way is referred to as a visibility. It is then straightforward to correct for this
effect at later stages of data processing, when deriving the intensities, if all the interferometer elements
have the same reception pattern. It is simply a case of dividing the measured intensities by a primary
beam factor, approximately 1 at the phase tracking centre, and falling to smaller factors towards the
outer edges of the beam.

5.3 Deconvolution

Secondly, in practice Vν(u,v) cannot be sampled everywhere in the uv plane. This is described by a
sampling function, which is zero at the points in the plane where no measurements have been taken.
Including this and Fourier inverting the visibility measured by the interferometer gives;

ID
ν (l,m) =

∫ ∫
Vν(u, v)S(u, v)e−2πi(ul+vm)dudv (10)

The set of fourier inverted visibilities ID
ν (l, m) is referred to as the dirty image. To obtain the true

set of intensity values Iν(l,m), the synthesised beam B corresponding to the sampling function must be
deconvolved from the true intensity distribution.

ID
ν (l, m) = Iν ∗B (11)
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where B is the synthesised beam, related to the sampling function by;

B(l,m) =
∫ ∫

S(u, v)e2πi(ul+vm)dudv (12)

Deconvolution is generally carried out using the ‘CLEAN’ algorithm. Since Iν(l,m) cannot be recovered
directly, due to the finite number of uv data points, the basic premise of ‘Clean’ is to assume that the
image can be represented by a field of point sources. The algorithm then proceeds to find the point
of highest intensity in the ‘Dirty’ image, and then subtract from the dirty image at this position, the
intensity multiplied by the synthesised beam. Then repeat this process down to a peak intensity level
specified by the user. Finally, it takes the accumlated point source model, and convolves it with an
idealised synthesised beam (usually a gaussian fitted to central lobe of the synthesised beam), then adds
the residuals of the dirty image to this image. 3.

Thus in order to make an image of the true intensities, the spatial coherence function must be measured
with good coverage in the uv plane by the interferometer and these visibilities then fourier inverted, and
the synthesised beam deconvolved.

6 Calibration and Editing

Taking a step back, in practice, the observed visibilities will differ from the true visibilities due to a
less than perfect instrument, and a variety of additional mechanisms, for example refraction by the
ionosphere. Estimating these effects, and correcting the observed visibilties to obtain the true visibilities
is the process known as calibration.

Editing, or ‘flagging’ refers to the process of excluding data that is severely corrupted. This can be
due to instrument problems, bad weather, interference from man-made sources etc. Generally all radio
interferometric observations will require some flagging.

Formally, for one baseline with antennas i and j we can define a relation between the observed visibilities
Ṽij(t) and the true visiblities Vij(t).

Ṽij(t) = G̃ij(t)Vij(t) + εij(t) + ηij(t) (13)

where t is the time of the observation, G̃ij(t) is the baseline based complex gain, εij(t) is a baseline based
complex offset, and ηij(t) is a stochastic complex noise. The simplest way of performing a calibration is
to use observations of a point source with known flux density S, and known position. The true visibility
amplitude will be S Jy, and phase will be 0 (observing the calibrator in the centre of the field). Therefore
the estimate of the gain is

G̃ij(t)Vij(t) =
Ṽij(t)

S
(14)

The offset terms εij(t) and ηij(t) are assumed to be negligible after averaging of data in the scan. This
is a simplified view of the scalar, total intensity case, and the process of calibration requires many more
considerations. Some of these are looked at within the context of the Measurement Equation in section
9, but for more detail, see Taylor et al. (1999).

6.1 Self-Calibration

A detailed look at self-calibration is beyond the scope of this seminar, however it is an important step
in the data reduction process.Self-calibration is the process of allowing the gains of each individual
element to be a free parameter. This allows individual element instrumental & atmospheric effects to be
corrected for. Self-calibration is possible as we have many antenna/station/dipole elements, and hence
a large redundancy in the initial calibration. The process of self calibration is as follows. Starting with
usually a CLEANed image of the field, this can be converted to a point source model and the gains
solved for. The visibilities are corrected and a new image made. This cycle is repeated until the image
shows no more visible improvement.

3For further details see ‘The Deconvolution Tutorial’, available online at http://www.cv.nrao.edu/~abridle/deconvol/
deconvol.html

School of Physics and Astronomy Date: 05-03-10



Radio Interferometry & The Measurement Equation - 14

7 In Practice

Traditional interferometric imaging packages such as AIPS or MIRIAD will perform the steps described
above through a variety of ’tasks’. CASA, a next generation package is similar in nomenclature to AIPS.

• Raw uv-data - tasks to plot the raw visibilities. Editing tasks to ‘flag’ or exclude RFI (Radio
frequency interference, eg local radio station signals etc).

• Raw uv-data calibration - tasks to utilise known sources to calibrate the raw visibilities.

• The dirty image - imaging task to inverse fourier transform the calibrated visibilities.

• deconvolution - imaging task implementing the ‘CLEAN’ algorithm to deconvolve the synthesised
beam from the image

8 The Measurement Equation

The basic concepts which I have presented so far are standard as an introduction to radio astronomy, and
are described in far greater detail in the classic texts of Thompson.(1986) and Taylor.(1999). This is the
standard layout which underpins many of the major existing software packages such as AIPS, MIRIAD
etc. Do we need to do better?

• we do not have a full mathematical description of the polarisation.

• the assumptions above are much more difficult to implement for an array of dipoles, with a field
of view covering the whole sky.

• existing calibration corrects uv-plane effects: there is no allowance for correction of image plane
effects, such as ionospheric variations.

• existing packages are difficult to add to/modify, and are no longer being actively maintained.

In 1996 Hamaker et al derived a mathematically complete description of what is measured by any
interferometer.4 The measurement equation effectively describes the path of the radio signal through
the various propagation mediums, such as the ionosphere, antenna feeds etc up until reception by the
correlator, by a series of matrices, the Jones matrices.

The field of optical polarimetry has a wide range of formalisms available to describe polarisation. We
have the Stokes parameters to describe the state of polarisation of light, and the Jones and Mueller
matrices to describe the transformation of the polarisation state as the wave propagates through various
mediums. As a reminder Mueller matrices are a generalisation of the Jones matrices. Jones matrices are
only applicable to fully polarised light.

The Measurement Equation provides a transparent and compact description of radio interferometric
measurements at all polarisations, and is being adopted as the formalism in new interferometric reduction
packages intended for telescopes such as LOFAR and the SKA. See for example the AIPS++/CASA
cookbook, or the guide to Meqtrees Noordam(2009), a calibration and simulation package for LOFAR.

Beginning with the assumption that all the radiation arrives from a single point, the propagation of the
’source’ electric field is defined as

e =
(

ex

ey

)

(15)

in the xy plane, with z the direction of propagation.
4See Taylor.(1999), chapter 32 for a detailed introduction. The simple derivation I give here is based on the lectures by

Oleg Smirnov & Jan Noordam at MCCT SKADS 2009
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The Measurement Equation formulation makes only one main assumption, that the propagation of the
wave is linear. Therefore this propagation can be described by a 2x2 matrix, and the voltages measured
by each antenna, or station are also linear with respect to e.

v = Je (16)

Returning to the simplest two element interferometer, antennas/stations p and q measure voltages de-
scribed by

vp = Jpe (17)

vq = Jqe (18)

The interferometer measures the cross correlations between the two voltages.

vxx = 〈vpxv∗qx〉 (19)

vxy = 〈vpxv∗qy〉 (20)

vyx = 〈vpyv∗qx〉 (21)

vyy = 〈vpyv∗qy〉 (22)

Writing these as a matrix product

Vpq =
〈(

vpx

vpy

)
(v∗qxv∗qy)

〉
=

(
vxx vxy

vyx vyy

)

(23)

This is known as the visibility matrix. Substituting in the expressions above

Vpq = 〈(Jpe)(Jqe)T 〉 = 〈Jp(eeT )JT
q 〉 = Jp〈eeT 〉JT

q (24)

The inner quantity is known as the source coherency, or source brightness, and can be written in the
more familiar terms of the Stokes parameters as

B = 〈eeT 〉 = 0.5
(

I + Q U ± iV
U ± iV I −Q

)

(25)

Finally we can write
Vpq = JpBJT

q (26)

which is the measurement equation. The Js are known as Jones matrices, and they are a product of
individual Jones terms, describing the full signal path. The order of the Js is important, it follows the
physical order of effects in your signal path, reading right to left in the equation.

The majority of physical effects on the signal path have a simple Jones matrix representation, for example
a Faraday Rotation term would appear as

F = (RM/ν2)
(

cosθ −sinθ
sinθ cosθ

)

(27)
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The generic Jones terms can be listed as

Ji = Gi [Hi] [Yi] Bi Ki Ti Fi = Gi [Hi] [Yi] (Di Ei Pi) Ki Ti Fi (28)

in which

Fi(~ρ, ~ri) ionospheric Faraday rotation - the polarisation plane of the wave is rotated after
passing through ionosphere.

Ti(~ρ, ~ri) atmospheric complex gain - refraction/exinction by atmosphere.
Ki(~ρ.~ri) factored Fourier Transform kernel - needed for modelling a tied array.
Pi projected receptor orientation(s) w.r.t. the sky, or parallactic angle term
Ei(~ρ) voltage primary beam
Di position-independent receptor cross-leakage - how much radiation is picked up by

one receptor that should be picked up by the other.
[Yi] commutation of IF-channels
[Hi] hybrid (conversion to circular polarisation coordinates)
Gi electronic complex gain (feed-based contributions only)

Matrices between brackets ([ ]) are not present in all systems. Bi is the ‘Total Voltage Pattern’ of an
arbitrary feed, which is usually split up into three sub-matrices: Di Ei Pi. Jones matrices that model
‘image-plane’ effects depend on the source position (direction) ~ρ. Some also depend on the antenna
position ~ri, and most on time and frequency as well5, see Noordam. (Noordam, 1996).

In general, these matrices do not commute, so the order is key.

This is an important point, as in many of the older packages, several effects are often grouped together,
when they do not necessarily commute.

For example parallactic angle and ionospheric Faraday rotation come after primary beam, as they do
not commute with the primary beam matrix, yet the Faraday rotation matrix is often combined with
the reciever gain term. This is also the case for tropospheric effects, which are also often included as
part of the receiver gain term. Conversely, grouping several effects together can give substantial gains in
computational efficiency. This leads to the obvious question, why does existing calibration apparently
work so well?

The answer lies in the fact that several of these effects can be approximated by matrices that do commute
with some others whilst in the wrong order.These approximations are good for existing arrays, but will
not in general apply to newer ones.

As an example, let’s look at the ionosphere. Often Faraday rotation and atmospheric complex gain are
included as part of the receiver gain. This is an acceptable approximation for most existing arrays where
the ionosphere TEC (total electron content) does not change noticeably over the primary beam (field
of view of antenna), and there is no appreciable cross-leakage. This however will be a significant effect
for new dipole arrays, see figure 11, as the field of view of each dipole is so large as to see a changing
ionosphere, and a cross-leakage term will be necessary.

This seems very intuitive, so why has the full measurement equation not been implemented until now?
Most older existing packages use some implicit, specific to the instrument, form of the measurement
equation, and work well for current, well understood instruments such as the VLA and WSRT. However
even the most widely used packages such as AIPS are no longer being actively developed, and are difficult
to modify. Re-writing AIPS is not practical (or indeed necessary for existing instrument data analysis)!
For the next generation of radio telescopes, the Measurement Equation is not just an elegant formalism,
but a requirement, to enable good calibration of polarisation and ionospheric effects.

5Jan Noordam’s latex file of Measurement Equation notation was used in preparing this lecture, available online at
http://www.astron.nl/~noordam/.
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Figure 11: Effect of the Ionospheric TEC on Different Arrays. Panels one and two show array elements with
narrow fields of view - each element will see an approximately constant TEC. In panels three and four, the wide
field of view of the elements imply that each element will see a changing TEC across the field of view. For
the compact array illustrated in panels one and three, the variation in the ionospheric TEC for a particular
viewing direction in the field of view will be a gradient, however for the extended arrays in two and four, this
will not be the case. For panels one and two, traditional self calibration is sufficient to correct the ionospheric
effects. However in panels three and four, the ionosphere changes with both time and viewing direction, and
more advanced calibration methods are required, such as SPAM, Intema et al. (2009).
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