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Abstract

Many problems in astrophysics require a quantification of the energy exchange be-
tween radiation and matter. This is obtained by formulating and solving an equation of
radiative transfer, although how this is done will vary significantly based on the nature
of the interactions in the system under investigation. In this pedagogical seminar I will
describe some of these interactions with a focus on scattering by resonance lines. I will
also describe the formulation of the associated radiative transfer and illustrate the inher-
ent difficulty associated with treating scattering processes compared with e.g. thermal
absorption/emission processes.
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1 Introductory theory and principles

This pedagogical seminar is concerned with the theory that describes energy exchange between
radiation and matter, ‘radiative transfer’, particularly in the context of different mechanisms
by which the two interact. This inroductory section will introduce much of the formalism and
obtain some of the results necessary for what follows. The next section will comprise a detailed
discussion of one particular mechanism, scattering by resonance lines, and some details of the
associated radiative transfer. Finally, section three will focus on contrasting mechanisms at
work in a particular scenario and attempt to draw attention to some of the differences apparent
in the way radiative transfer in such an environment unfolds.

1.1 Radiative Transfer

Iν(r,n, t)

dω

dA

Figure 1: The geometry used in defining the specific intensity of the radiation field

We begin by introducing the fundamental quantitative description of the radiation field, the
specific intensity. The specific intensity Iν is defined with reference to figure 1 as:

dE = Iν(r,n, t) dA dω dν dt (1)

i.e. the specific intensity defines the energy dE transferred in time dt by radiation in frequency
range ν → ν + dν, contained in solid angle dω about n, normal to area dA. We have made
explicit the dependence of Iν on position in space, direction and time.

Now consider the transfer of a beam of radiation through some material (see figure 2). The
material can be decribed, in general, as a source of opacity - the interaction of the radiation with
the material will cause some transfer of energy out of the beam. We describe the appropriate
energy lost from the beam, which is proportional to both the incident specific intensity and the
differential distance travelled through the material, via the extinction coefficient χν :
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ds

dA

Iν(r,n, t) Iν(r + ∆r,n, t + ∆t)

Figure 2: Transfer of radiation through some source of opacity and/or emissivity

dE = χνIν dA ds dω dν dt (2)

Similarly we can say that our generalised medium is a source of emissivity, interactions that
cause the addition of energy to the beam. Such an addition of energy will build up along the
path length travelled through the material, and is described via the emission coefficient :

dE = ην dA ds dω dν dt (3)

The emission and extinction coefficients will have forms dictated by the interactions that they
represent (perhaps multiple kinds). The effect on the evolution of the specific intensity of
radiation through the material can be quantified as follows (see figure 2):

[Iν(r + ∆r,n, t+ ∆t) − Iν(r,n, t)] dA dω dν dt = [−χνIν(r,n, t) + ην ] ds dA dω dν dt

Taylor expansion of the spatial and time arguments yields, for the left hand side:

[

Iν(r,n, t) + (∆r.∇)Iν(r,n, t) + ∆t
∂

∂t
Iν(r,n, t) − Iν(r,n, t)

]

dA dω dν dt

If we note that ∆r = n ds and ∆t = ds/c, we obtain the radiative transfer equation for the
specific intensity:

[

1

c

∂

∂t
+ n.∇

]

Iν(r,n, t) = −χν(r,n, t)Iν(r,n, t) + ην(r,n, t) (4)

This is a completely general statement of the evolution of the specific intensity, but in this
form it is of little practical use. A straightforward application is the calculation of radiative
transfer through a static 1D cloud (1D in that we assume any variation in opacity and emissivity
is constrained to lie along a single direction, that which the incident radiation passes along;
subsequently the specific intensity will change along this direction only). For such a case we
can write n.∇ = d/ds, the derivative w.r.t. the path-length s travelled through the cloud. If we
now change variable to the optical depth defined such that dτν = χν ds, and define the source
function Sν ≡ ην/χν , the transfer equation can be written:
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dIν(τν)

dτν
= −Iν(τν) + Sν(τν) (5)

Thus in this simple setup the radiative transfer equation reduces to a first order ordinary
differential equation, easily solved to give the solution (assuming a constant source function):
Iν(τν) = Iν(0) e−τν +[1 − e−τν ] Sν . The equation and solution give some physical insight into τν
and Sν ; the optical depth accumulated along the path of the incident ray will tend to suppress
it exponentially, while the integrated source function will boost it in intensity.

Before proceeding we define the angle-averaged specific intensity (sometimes called the mean
intensity) as:

Jν(r, t) =
1

4π

∮

Iν(r,n, t) dω

For an isotropic radiation field where Iν is independent of direction, Jν = Iν . Another important
quantity obtained from the specific intensity is the flux Fν (defined such that Fν .dS is the rate of
flow of energy across surface dS), Fν(r, t) =

∮

Iν(r,n, t)n dω. The mean intensity and radiative
flux are respectively the zeroth and first order angular moments of the specific intensity. We
can integrate the transfer equation (4) over all solid angle to obtain its zeroth order angular
moment:

1

c

∂Jν

∂t
+

1

4π
∇.Fν = −χνJν + ην

where we have assumed the opacity and emissivity to be isotropic, as is often the case in the
local rest frame of the material.

1.2 LTE and the thermal source function

Consider an isolated system comprised of a box of some material bathed in radiation. If the
system is in thermodynamic equilibrium, the radiation field must be both homogeneous and
isotropic (in accordance with the Second Law of Thermodynamics). Under such circumstances,
there will be no net transfer of radiation between the radiation field and the material, thus we
require:

ην = χν Iν (6)

Also, the radiation is required to adopt a Planck spectrum corresponding to the thermal or
kinetic temperature of the matter, T ; this ensures that the matter and radiation in some sense
have the same ‘temperature’, as required by thermal equilibrium. Thus Iν → Bν(T ) in the
equation above and we can describe the matter as having the source function:

Sν = Bν(T ) ≡ 2hν3

c2
1

exp (hν/kT ) − 1
(7)
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Thermodynamic equilibrium also allows us to assume the Boltzmann distribution; if we take
the example of atoms with ≥ 1 excited state(s), the level occupations ni, nj of two states of
energy Ei, Ej and statistical weights gi, gj are given by:

ni

nj
=

[

gi

gj

]

exp

[

−(Ei − Ej)

kT

]

(8)

Thus the distribution of atoms across the various excited states is determined simply by the
temperature T and the total density N = Σknk. Allowing for the possibility of ionisation,
similar determinations can be made for the distribution among states of ionisation using the
Boltzmann-derived Saha equation.

If a system is in thermodynamic equilibrium, consideration of radiative transfer is redundant
- Iν = Bν everywhere - but we might apply the properties outlined above under an assumption
of Local Thermodynamic Equilibrium (LTE), amounting to the following:

• Our medium has an inhomogeneous temperature, and we assume that the gradient of this
temperature is sufficiently small that thermal equilibrium is in place locally at position r
with temperature T (r) and density N(r). The medium locally adopts all the properties
associated with such a state.

• We are assuming thermal equilibrium of the matter only; the radiation spectrum need
not be equal to the Planck spectrum and the radiative transfer equation remains to be
solved.

To solve the radiative transfer problem we need to know the opacity and emissivity; these
are in general determined by level populations, ionisation information etc. (the ‘state’ of the
medium) which are in turn determined by equations of statistical equilibrium which generally
involve the influence of the radiation field (see Mihalas [1978] ch. 5). Assuming LTE bypasses
the process of solving the statistical equilibrium equations with the radiative transfer equation;
the level populations are simply given by (8) and ην = χνBν =⇒ Sν = Bν .

1.3 Bound-bound transitions in the 2-level atom

A21 B12 B21 hν0

E1

E2

Figure 3: Radiative transitions in a 2-level atom; levels labelled 1 (ground state) and 2 (excited
state), (E2 −E1) = hν0
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Consider the atomic energy level diagram shown in figure 3. The arrows correspond to
3 distinct kinds of radiative transition; these are, along with their corresponding Einstein
coefficients:

• Spontaneous emission: a photon of frequency ν = ν0 is emitted upon the radiative decay
of the atom from state 2 to state 1. This process is characterised by the Einstein A
coefficient, defined such that:

A21 ≡ transition rate for spontaneous emission

• Absorption: a photon of frequency ν = ν0 is absorbed to excite the atom from state 1 to
state 2. Characterised by the upwards Einstein B coefficient, defined such that:

B12Jν0 ≡ transition rate for absorption

• Stimulated emission: a photon of frequency ν = ν0 is emitted upon the de-excitation of
the atom from state 2 to state 1, induced by an interaction with an identical photon.
This process is characterised by the downwards Einstein B coefficient, defined such that:

B21Jν0 ≡ transition rate for stimulated emission

The Einstein coefficients A21, B12 and B21 are properties of the transition between the 2 levels;
they can be calculated using the relations derived below together with a semi-classical approach
that treats a classical radiation field as a quantum mechanical perturbation to the states of the
atom, see e.g. Rybicki and Lightman [1986] ch. 10.

At this stage we note that an assumption of thermodynamic equilibrium will allow us to
derive relations between the Einstein coefficients. First we use the principle of detailed balance,
that the net rate of upwards transitions from 1 to 2 is equal to the net rate of downwards
transitions from 2 to 1, or:

n1B12Jν0 = n2[A21 +B21Jν0] (9)

We can also use that the level populations are given by the Boltzmann distribution (8); n2/n1 =
(g2/g1) exp (−hν0/kT ), while the radiation field adopts the Planck spectrum and we can say
Jν0 = Bν0(T ). Together these statements allow us to show (without loss of generality, as the
coefficients are intrinsic properties of the atomic transition):

B21 =

[

g1

g2

]

B12 (10)

A21 =
2hν3

0

c2
B21 (11)

These relations are of great importance; clearly the strength of radiative transitions in an atom
can be characterised by a single quantity (i.e. any of the 3 Einstein coefficients or the more
physically meaningful and dimensionless ‘oscillator strength’, see Rybicki and Lightman [1986]).
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Before moving on, we note that collisional transitions between the 2 atomic states in figure
3 are also possible; we can have collisional excitation, when the excitation energy is transferred
to the atom by a collision with some other particle, and collisional de-excitation (the reverse
process). Say that collisional excitations and de-excitations are described by the transition
rates C12 and C21 respectively; detailed balance applied to the 2-level atom in the presence of
some species of colliders of density nc gives:

n1C12 = n2[C21 + A21] =⇒ n1ncκ12 = n2[ncκ21 + A21] (12)

where we have assumed no radiation field is present, although spontaneous emission still occurs.
We have implemented the definition Cij ≡ ncκij ; clearly the rate of collisions will be propor-
tional to the density of colliders nc, and so in defining the κ-coefficients we are simply factoring
out this dependence. We can then choose nc sufficiently high that collisional de-excitation
happens much faster than radiative; we neglect the A-coefficient contribution and write:

C12 =
n2

n1

C21 =

[

g2

g1

e−hν0/kT

]

C21 (13)

As C12/C21 = κ12/κ21 and the κ’s are properties of the atom (at fixed temperature), this relation
holds true in general. Note that in this scenario the level populations obey the Boltzmann
distribution; this can be interpreted as a by-product of the utility of collisions in ensuring LTE
in high density situations.

2 Resonance Line Scattering

Resonance line scattering is a process that can be understood in the context of the 2-level atom
model described in the previous section:

θ
(ν′,n′)

(ν,n)v

Figure 4: Sketch of scattering geometry

• A photon of frequency ν ′ travelling in direction n′ comes into contact with an atom of
resonance frequency ν0, moving with a thermal velocity v; the photon causes radiative
excitation of the atom i.e. promotes an electron from 1 → 2.

• The atom decays back to the initial state (2 → 1), emitting a photon of frequency ν in
direction n; generally we will have n 6= n′ and thus ν 6= ν ′ (due to Doppler shifting at
the very least, see equation (23) later).
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2.1 Photon redistribution

To describe radiative transfer of resonance line scattering we use the redistribution function
R(ν ′,n′; ν,n), defined (in accordance with the conventions of Mihalas, see Mihalas [1978] ch.
13) such that the probability of scattering of a photon from frequency ν ′ → ν ′+dν ′ and direction
within solid angle dω′ about n′ to frequency ν → ν + dν and direction within solid angle dω
about n is given by:

R(ν ′,n′; ν,n) dν ′ dν
dω′

4π

dω

4π
(14)

This function is normalised such that integration over all 4 variables (incoming direction and
frequency, outgoing direction and frequency) gives unity. An extremely useful quantity that we
can derive from the redistribution function is the line absorption profile ϕ(ν ′);

ϕ(ν ′) =
1

4π

∮

dω

∫

∞

0

dν R(ν ′,n′; ν,n) (15)

This acts a probability distribution function for the frequency at which the photon is absorbed;
from the interpretation of the redistribution function, we can say that ϕ(ν ′) dν ′ is the proba-
bility of scattering from ν ′ → ν ′ + dν ′ to any other frequency (equivalently interpreted as the
probability of absorption). Note that the line profile is normalised as follows:

∫

∞

0
ϕ(ν)dν = 1.

2.2 Physics of line absorption and scattering

For a resonance line centred on some frequency ν0, a first approximation to the line profile is
provided by a delta function at the resonant frequency, ϕ(ν) = δ(ν − ν0); no photons are ab-
sorbed other than those with exactly the right frequency to excite the relevant atomic transition.
However, in attempts to solve the transfer equation for line absorption/emission/scattering, it
is usually necessary to consider a ‘broadened’ line profile, with a non-zero probability for ab-
sorption in some narrow region about ν0. There are several physical effects responsible for line
broadening; we describe 2 such mechanisms below that are commonly applicable.

Natural broadening: Consider an isolated 2-level atom in its rest frame, with an ex-
cited state of finite lifetime τ and corresponding decay rate Γ = τ−1; Γ = A21 as introduced
in section 1.3. The uncertainty principle tells us that the excited state has a finite energy
width ∆E ≈ ~Γ - note that the ground state is assumed to have an infinite lifetime and
therefore zero line width. An outline quantum mechanical justification for the shape of the
naturally-broadened profile is given by Mihalas; the wavefunction of the excited state has
time dependence ∼ exp [−(iω0 + Γ/2)t], with the exp [−(Γ/2)t] factor required by noting the
corresponding probability of finding the atom in the excited state decays as exp (−Γt). The
probability distribution for the energy of the excited state is given by the modulus of the Fourier
transform of the wavefunction, thus we can obtain the absorption line profile as follows:

P (ω) ∝
∣

∣

∣

∣

∫

∞

0

e[i(ω−ω0)−Γ/2]tdt

∣

∣

∣

∣

2

= [(ω − ω0)
2 + (Γ/2)2]−1
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=⇒ ϕ(ν) =
Γ

4π2

[

1

(ν − ν0)2 + (Γ/4π)2

]

(16)

i.e. the line shape adopts a Lorentz profile, analogous to the scattering cross-section of a damped
classical harmonic oscillator with damping constant Γ.

Doppler broadening: In typical astrophysical situations we have to deal with a further
contribution to the line broadening arising when we consider the absorption profile of an en-
semble of atoms with a Maxwellian thermal velocity distribution. Consider an atom seen to
have thermal velocity component vr along the line of sight from the observer; if the observer
then sends a photon of frequency ν towards the atom, the atom (in its rest frame) will see the
photon at frequency ν(1−vr/c) ≈ ν−ν0(vr/c). The resulting absorption profile then becomes a
convolution of the rest-frame profile (which we denote ϕRF (ν)) and the Maxwellian distribution
of the thermal velocity component along the line of sight, for atoms of mass m at temperature
T :

ϕ(ν) =

∫

∞

−∞

ϕRF [ν − (ν0/c)vr] p(vr) dvr, p(vr) =
[ m

2πkT

]1/2

e−mv2
r/2kT (17)

In the case of an infinitely sharp excited state with resonant frequency ν0, the convolution yields
a Doppler profile, a Gaussian centred on ν0:

ϕ(ν) =

∫

∞

−∞

δ[ν − (ν0/c)vr − ν0] p(vr) dvr

=
c

ν0
×

[ m

2πkT

]1/2

e
−

mc
2(ν−ν0)2

2ν
2
0kT (18)

At this stage a particularly useful change of variables becomes apparent; if we define the typical
thermal velocity or equivalently the ‘b parameter’ b ≡ (2kT/m)1/2, we see that we can write
the width of the Doppler profile as ∆νD = ν0(b/c), defined such that the exponential in (18)
becomes exp[−(ν − ν0)

2/(∆νD)2]. We now introduce the variable x ≡ (ν − ν0)/∆νD, the
frequency offset from line centre in Doppler widths. We write the line absorption profile as
a function of x, φ(x) = ϕ(ν) × ∆νD, in the case of both the Doppler profile and the Lorentz
profile:

(18) =⇒ φD(x) =
1√
π
e−x2

(19)

(16) =⇒ φL(x) =
a

π

[

1

a2 + x2

]

(20)

where in the second equation we introduce the ‘Voigt parameter’ a = Γ/(4π∆νD), which gives
a rough indication of the strength of natural broadening relative to Doppler broadening.

While it is useful to study both natural broadening and Doppler broadening in isolation, the
most useful results come from studying the more applicable case of a naturally-broadened line
profile that then undergoes Doppler broadening. Taking the Lorentz profile in equation (16) as
the rest-frame profile ϕRF (ν) in equation (17), adopting the integration variable y = vr/b, and
finally taking x as the frequency variable, we obtain:
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φ(x) = π−1/2H(a, x), H(a, x) ≡ a

π

∫

∞

−∞

e−y2

a2 + (x− y)2
dy (21)

This form for the absorption line profile is called the Voigt profile (while H(a, x) is known as
the Voigt function) and is plotted in figure 5, along with the Lorentz and Doppler profiles, for
a Voigt parameter a = 0.015.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-4 -2  0  2  4

φ(
x)

x

 0

 0.001

 0.002

 0.003

 0.004

 0.005

-4 -2  0  2  4

φ(
x)

x

Figure 5: (Left) The normalised absorption line profiles with Voigt parameter a = 0.015; Voigt
(solid line), Doppler (dashed line) and Lorentz (dot-dashed). (Right) Zoomed-in view to display
behaviour in the wings

Clearly the Voigt profile resembles the Doppler profile near line centre (x = 0) and at large
|x| begins to resemble the Lorentz profile. We describe the line as having a ‘Doppler core’ and
‘Lorentz wings ’; the prominence of the wings relative to the core will increase with larger a.

Before leaving the physics of the absorption profile behind, we note that other forms of line
broadening are available, most notably collisional broadening which will dominate in very high-
density scattering media. See Mihalas ch. 9 for a detailed discussion of collisional broadening.

It makes sense to now try looking at extending our study of line absorption to line scatter-
ing. As mentioned previously, line scattering involves photon absorption followed by photon
emission; a good starting point is to consider absorption and re-emission of a photon in the
rest frame of the scattering atom. We can write the redistribution function for scattering in
the rest frame as follows:

RRF (ξ′,n′; ξ,n) = ϕRF (ξ′) × pRF (ξ|ξ′) × g(n′,n) (22)

where we have used ξ to represent rest frame photon frequencies; the function pRF (ξ|ξ′) acts as
a conditional probability distribution function for the emission frequency ξ given absorption at
frequency ξ′, while g(n′,n) describes the directional redistribution. We can deduce the forms
that these functions will take by interpreting a broadened excited state in terms of ‘substates’:
the excited state (e.g. state 2 of the 2-level atom) is comprised of a continuum of substates, the
probability density distribution of which in frequency space determines a range of frequencies at
which a photon can be absorbed and is thus given by the line absorption profile. Now consider
the form of the factorised redistribution function in the rest frame (we assume our atom to be
excited from the ground state, and neglect collisional broadening):
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• The upper level has finite width thus the absorption function (and therefore the substate
distribution about the resonant frequency) adopts a Lorentz profile ϕ(ξ′) = (Γ/4π2)[(ξ′−
ν0)

2 + (Γ/4π)2]−1 (note: we do not use the Voigt profile as we are in the rest frame and
have no thermal atomic velocities to average over).

• The atom absorbs at frequency ξ′; thus the atom is excited to the substate of energy hξ′.
Upon return from this substate to the ground state a photon of frequency ξ is emitted,
but as the ground state has fixed energy we know ξ = ξ′. Thus p(ξ|ξ′) = δ(ξ − ξ′).

• The function g(n′,n) should really be written g(n′.n), as it is invariably a function of the
angle between the 2 directions only; the form of the functional dependence is determined
by the quantum numbers involved in the transition, but it is usual to assume isotropic
scattering (g(n′.n) = 1).

The single-atom redistribution function in the laboratory frame is then obtained by applying
the following Doppler shifts to equation (22):

ν ′ = ξ′ + ν0

[

v.n′

c

]

, ν = ξ + ν0

[v.n

c

]

(23)

where v is the velocity of the atom in the lab frame due to thermal motions. Note that while the
frequencies are transformed between the 2 frames, aberration of the photon direction vectors
can be neglected. To obtain a redistribution function that will be applicable to a population
of atoms it is then necessary to average over the Maxwellian thermal velocity distribution for
v. The result, written in terms of Doppler shifts from line centre x where R(x′,n′; x,n) =
R(ν ′,n′; ν,n) × (∆νD)2, is:

R(x′,n′; x,n) =
g(n′,n)

π sin θ
exp

[

−
(

x′ − x

2

)2

csc2 (θ/2)

]

×H

(

a sec (θ/2),
1

2
(x′ + x) sec (θ/2)

)

(24)

where θ is the angle between the photon directions (see figure 4) and H is the Voigt function
defined in (21). From this form we obtain the angle-averaged redistribution function R(x′, x) =
1
4π

∮

dω R(x′,n′; x,n):

R(x′, x) =
1

π3/2

∫

∞

(x̄−x)/2

[

tan−1

(

x+ u

a

)

− tan−1

(

x̄− u

a

)]

e−u2

du (25)

where x̄ = max(x, x′) and x = min(x, x′). Integration over all emitted frequencies will recover
the absorption profile, φ(x′) =

∫

∞

0
R(x′, x) dx. Both forms of the redistribution function stated

here describe what is referred to in the literature as ‘Type II’ redistribution; this label refers
to the conditions under which the functions are applicable, namely the atom in the rest frame
is excited from the ground state to some naturally broadened upper state with no collisional
broadening. This is common in many astrophysical scattering problems, e.g. H I Lyα scattering
in low-density media. It is worth noting that Type I redistribution is the limit of Type II when
the upper state has zero energy width, something that does not occur in nature. There also
exist types III and IV which correspond to redistribution with collisional broadening of the
upper state (important in high density media), and natural broadening of both the upper and
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lower state (important if the transition occurs between 2 excited states) respectively. An in-
depth discussion of the various redistribution functions is provided by Hummer [Hummer, 1962]
and Mihalas ch. 13 [Mihalas, 1978].

It is worthwhile to look at the conditional probability that a photon absorbed at x′ will be
re-emitted at x; this is obtained from the redistribution function by appropriate normalisation,
p(x|x′) = R(x′, x)/φ(x′). This function is plotted in figure 6 for a series of values of x′.
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Figure 6: p(x|x′) = R(x′, x)/φ(x′) for x′ = 0, 1, 2, 3, 4, 5 (in order of peak value from left to
right) with a = 0.015

Finally for this section, we quote approximate forms of the redistribution function intended
to model some simple scattering scenarios:

Coherent redistribution: The photon is absorbed at lab frame frequency shift x′ and re-
emitted at x = x′; we represent this via the angle-averaged redistribution function

R(x′, x) = φ(x′) δ(x′ − x) = φ(x) δ(x′ − x) (26)

Complete redistribution: The photon is absorbed at x′ and re-emitted at frequency shift x,
entirely uncorrelated with x′:

R(x′, x) = φ(x′) φ(x) (27)

Complete and coherent redistribution describe Type-II redistribution fairly well for absorption
in the core and the wings of the line respectively. Photons absorbed in the wings (typically only
possible for large a) scatter in a roughly coherent manner, while photons absorbed in the core
(|x′| ≤ xc ≈ 2.6 for a = 0.015 - boundary at xc determined by solution to φD(xc) = φL(xc))
undergo a random frequency reshuffling.
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2.3 The line source function

We want a general expression for the source function to use in a calculation of the radiative
transfer accounting for resonance line scattering - we assume isotropy of the radiation field.
Here we begin by writing expressions for the extinction and emission coefficients:

χν = [n1B12ϕ(ν) − n2B21ψ(ν)]
hν0

4π
(28)

ην = n2A21ψ(ν)
hν0

4π
(29)

These equations follow from definitions of the Einstein coefficients in terms of transition rates,
given in section 1.3, or at least a more robust version accounting for the spread in frequency
space of the excited state. Consider that atoms in state 1 will absorb photons with a frequency
distribution ϕ(ν), thus the transition rate for absorption becomes B12Jν ϕ(ν)dν. The rates for
spontaneous emission and stimulated emission will become A21 ψ(ν)dν and B21Jν ψ(ν)dν; note
that we have introduced an emission profile ψ(ν) ( 6= ϕ(ν) in general).

The emission profile profile describes the distribution in frequency of the occupancy of the
excited state, i.e. the total excited state occupancy n2 becomes a distribution n2(ν) = n2ψ(ν).
n2(ν) is formally determined from the equation of statistical equilibrium for the excited state;
we do not discuss the relevant equation here, but we note that it must account for the possibility
of resonant scattering causing redistribution from ν ′ to ν for frequencies in the upper state. We
can attain a form for ψ(ν) by a physical argument for the form of the emission coefficient (we
ignore stimulated emission):

• The energy removed from a beam of mean intensity Jν′ at frequency ν ′ is proportional
to χν′Jν′ dν ′, where χν′ = χlϕ(ν ′) is the extinction coefficient and χl = n1B12hν0/(4π).
Let’s call this energy E(ν ′) dν ′.

• The energy of photons from this frequency ν ′ subsequently scattered to frequency ν
is given by the previous quantity multiplied by the conditional probability p(ν|ν ′) =
R(ν ′, ν)/ϕ(ν ′). Let’s call this quantity E(ν ′, ν).

• The total energy of photons scattered to frequency ν is given by integrating the previous
quantity over all ν ′. Let’s call this quantity E(ν); it’s given by:

E(ν) =

∫

dν ′ E(ν ′, ν)

=

∫

dν ′ E(ν ′) × R(ν ′, ν)

ϕ(ν ′)

∝
∫

dν ′ χlϕ(ν ′)Jν′ × R(ν ′, ν)

ϕ(ν ′)

• The quantity E(ν) is proportional to the emissivity. The proportionalities are such that
we can write:
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ην = χl

∫

R(ν ′, ν)Jν′ dν ′

We can see that the emissivity has a non-trivial frequency dependence; it is in fact dependent
upon the radiation field across the entire resonance line, not just at the frequency in question.
If we now return to the expression (29), consistency with our physical argument along with the
normalisation condition

∫

ψ(ν) dν = 1 requires that we say:

ψ(ν) = (J̄)−1

∫

R(ν ′, ν)Jν′ dν ′, J̄ =

∫

ϕ(ν)Jν dν (30)

We can write the equation of radiative transfer analogous to equation (4) for a homogeneous,
isotropic medium giving rise to resonance line scattering as:

1

c

∂Jν

∂t
= χl

[

−ϕ(ν)Jν +

∫

R(ν ′, ν)Jν′ dν ′
]

(31)

Finally, we quote the general result for the source function arising from resonance line
scattering, using the equations (28) and (29):

Sl =
n2A21ψ(ν)

n1B12ϕ(ν) − n2B21ψ(ν)
=

2hν3
0

c2

[

n1g2ϕ(ν)

n2g1ψ(ν)
− 1

]

−1

(32)

where, as we are including stimulated emission, we must use the full form of ψ(ν) determined
from statistical equilibrium of the excited state, i.e. not equation (30). Note that upon the re-
inclusion of stimulated emission the transfer equation as written in (31) is still accurate (more
specifically the RHS (ην − χνJν) is unchanged).

3 Radiative transfer in a ‘stellar atmosphere’

In this section we return to the general radiative transfer equation (4) and adapt it to for-
mulate and attempt to solve time-independent radiative transfer in a particular geometry, for
different varieties of opacity and emissivity. This geometry is a standard application of the
time-independent radiative transfer equation; the plane parallel semi-infinite atmosphere, often
used to approximate the atmosphere of a star.

All properties of the atmosphere become functions of the height z and the angle from the
normal, θ = cos−1 µ (isotropic quantities will then become functions of z only). The optical
depth scale is defined by dτν = −χν dz; the minus sign ensures that the optical depth increases
into the atmosphere. Now we write the appropriate time-independent transfer equation:

(n.∇)Iν =
∂

∂s
Iν = µ

∂Iν
∂z

= −χνµ
∂Iν
∂τν

=⇒ µ
∂Iν
∂τν

= Iν − Sν (33)
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θ

z

dz

ds = dz

cosθ

Iν
τν = 0
z = 0,

τν → ∞

Figure 7: Geometry of plane-parallel semi-infinite atmosphere; the optical depth is taken to be
zero at the boundary (z = 0) and increases without limit for decreasing z

where Iν = Iν(τν , µ) and Sν ≡ ην/χν = Sν(τν). This equation can be integrated after multipli-
cation by an appropriate integrating factor; if we integrate from τ1 to τ2, we obtain:

Iν(τ1, µ) = Iν(τ2, µ)e−(τ2−τ1)/µ +
1

µ

∫ τ2

τ1

Sν(τ)e
−(τ−τ1)/µ dτ (34)

This solution offers a complete understanding of the problem if we know the source function
Sν , along with any suitable boundary conditions. Now consider the problem of determining the
mean (angle-averaged) intensity at a depth τν within the atmosphere; we want to determine
the intensity at τν as a function of µ and integrate over solid angle. We divide the intensity at
the depth of interest into that which builds up from the stellar surface (‘incoming’ radiation)
and that which builds up from infinite depth (‘outgoing’ radiation):

• Incoming (π ≥ θ ≥ π/2): Iν(0, µ) = 0 for µ ≤ 0; the intensity entering the atmosphere
at the surface is zero. There are no sources capable of producing such radiation, the only
radiation at the surface will be exiting it with µ ≥ 0. Thus, the solution (34) for incoming
radiation will be given by (integrate from τ = 0 to τ = τν):

Iν(τν , µ) =
1

−µ

∫ τν

0

Sν(τ)e
−(τ−τν)/µ dτ, −1 ≤ µ ≤ 0

• Outgoing (π/2 ≥ θ ≥ 0): lim
τν→∞

[Iν(τν , µ)e−τν/µ] = 0 for µ ≥ 0; a beam of radiation from

infinite optical depth that encounters no source, only sinks (opacity), will be killed off
completely. The solution from (34) for outgoing radiation will then be given by (integrate
from τ = ∞ to τ = τν):

Iν(τν , µ) =
1

µ

∫

∞

τν

Sν(τ)e
−(τ−τν )/µ dτ, 0 ≤ µ ≤ 1

We now integrate from −1 ≤ µ ≤ 1 to obtain the mean intensity at optical depth τν as:
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Jν(τν) =
1

2

∫ 1

−1

Iν(τν , µ) dµ

=
1

2

[
∫ 0

−1

dµ

∫ τν

0

Sν(τ)e
−(τν−τ)/(−µ) dτ

(−µ)
+

∫ 1

0

dµ

∫

∞

τν

Sν(τ)e
−(τ−τν)/µ dτ

µ

]

=
1

2

[
∫ τν

0

dτ Sν(τ)

∫

∞

1

w−1e−(τν−τ)w dw +

∫

∞

τν

dτ Sν(τ)

∫

∞

1

w−1e−(τ−τν)w dw

]

=
1

2

∫

∞

0

dτ Sν(τ)E1(|τ − τν |), En(x) =

∫

∞

1

t−ne−xt dt (35)

where the change of variables w = 1/|µ| has been made in going from the second line to the third
line. This equation was derived by Schwarzschild (see Menzel [1967]) and is often called the
‘Schwarzschild-Milne equation’, while the E1 function is one of a set of functions {En} known
as ‘exponential integrals’. Many similar expressions exist for the moments of the radiation field
such as the flux in terms of integration over higher-order exponential integrals. Using such
expressions, it can be shown that we should expect Jν(τν) → Sν(τν) for τν → ∞ (see Mihalas
[1978] ch. 2 for details).

3.1 Thermal absorption/emission vs scattering

We can divide the many different mechanisms by which radiation and matter interact into
those that allow a net exchange of radiant / photon energy and the thermal / kinetic energy
of the particles comprising the transferring medium, and those that do not. The former can be
described as ‘true’ absorption (emission) processes as they involve the destruction (creation) of
a photon such that it’s energy is added to (extracted from) the medium’s pool of thermal energy;
an example would be the absorption of a photon by an atom which subsequently decays by
collisional de-excitation, transferring its excitation energy to kinetic energy distributed among
the particles. The other case in which photons are conserved describes scattering processes e.g.
resonance line scattering, see section 2.

For interaction processes between radiation and matter that come under true absorption
and/or emission, the medium actively exchanges energy with the radiation field such that the
radiation field will locally become coupled, to some extent, to the properties of the medium. For
such processes the assumption of LTE is often a good approximation and we take our source
function to be equal to the Planck function (Sν = Bν). Thus, from the analysis outlined before
we would get a mean intensity of Jν = Bν in the limit of large optical depth, travelling into the
star.

As a simpler example of scattering (beyond the discussion in section 2) consider the case
where we have some continuum scattering mechanism, such as Thomson scattering of photons
by electrons, at work in the atmosphere of our star. The scattering is ‘continuum’ in that
it occurs at all frequencies, a good approximation in Thomson scattering. Assume that this
mechanism brings about coherent, isotropic scattering (no change in frequency but random
directional redistribution); we can obtain the source function as follows:
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• Write χν = nσ, σ is the cross-section for scattering e.g. σ = σT for Thomson scattering.

• The emission coefficient is given by the isotropic power emitted per unit frequency interval
per unit solid angle, per unit volume: ην = Pν/(4π) × n. Noting that Pν = cσuν and
Jν = uν × c/(4π), we get ην = nσJν .

Thus we can write the source function as Sν = Jν ; in contrast to the LTE case, emission is now
decoupled from the properties of the local medium and strongly dependent on the radiation field
itself; this is a consequence of the passive role that the medium plays in scattering processes.
The radiation field at any given point can be strongly dependent on distant properties of the
scattering medium (e.g. due to boundary conditions enforced by the stellar surface) and thus
scattering acts to delocalise the radiative transfer problem.

Returning to the continuum coherent scattering example, we need to solve the following
radiative transfer equation:

µ
∂Iν
∂τν

= Iν − Jν (36)

As Jν = 1
2

∫ 1

−1
dµ Iν we see that the transfer equation has gone from a partial differential

equation in the LTE case to an integral equation. The evolution of the radiation field at some
depth in a particular direction now depends on the solution itself in all directions at that depth.
Note that the ‘solution’ in equation (35) with Sν → Jν is still an accurate statement, but it is
no longer an explicit statement of the solution Jν(τν); we now have an integral equation for Jν

which is not easily solved.

In the combined case involving both thermal absorption / emission and scattering, we can
write for the source function:

Sν = (1 − ρν)Bν + ρνJν , ρν =
nσν

χ
(thermal)
ν + nσν

(37)

Once again, the solution Jν can be stated as in (35) as an integral equation. We can develop
(35) into an iterative method known as ‘Λ-iteration’ (see Mihalas [1978] ch. 6) that can be used
to converge to the correct solution if the parameter ρν is small enough through the atmosphere.

4 Conclusions

We conclude with some general comments about the effects of scattering in radiative transfer.
Interactions that allow net exchange of thermal energy between the radiation field and the
transfer medium will generally tend to induce a coupling of the properties of the radiation
field to those of the medium (i.e. LTE, the radiation field tends to a Planck spectrum with
a radiation temperature equal to the kinetic temperature of the matter). In contrast to this,
scattering allows a decoupling of these properties in which the radiation field itself, nonlocal
to the direction or frequency for which it is being computed, affects its own development. We
can at least say that scattering produces problems in radiative transfer, and its application
throughout various areas of astrophysics, that are often non-trivial.
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