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1 Motivation

The interaction and merging of galaxies and pre-galactic fragments play a
crucial role in the formation and evolution process of galaxies. In both,
theory and observation, strong evidence has been found, that galaxies are
built up hierarchically by the merging of smaller, sub-galactic building blocks.
Galaxies in the process of merging or galaxies that show the signature of
former mergers are commonly observed. In general we distinguish between
major and minor mergers.
Major mergers happen due to encounters of large disk galaxies of comparable
mass. They stimulate star formation, disrupt galaxies and can lead to the
formation of tidal tails (see Fig. (1)). Giant elliptical galaxies are believed
to be the end product of a fairly disruptive version of a major merger.
Minor mergers take place when a small dwarf companion that is orbiting a
larger galaxy gets captured and accreted. The accretion of small companion
galaxies by larger disk galaxies is believed to contribute to the built up of
the stellar halo. In Fig. (1) a map of star counts of the Andromeda galaxy
(M31) is shown (taken from Ferguson et.al (2002)). Close to the southern
minor axis a giant stellar stream can be seen. This stream stems from a small
satellite companion that is in the process of being accreted by Andromeda. As
we will see later on, minor mergers do not only lead to subpopulations within
a galaxy, but can also change the structure of a galaxy. Some frequently
observed features in galaxies can only be explained by previous accretion
processes. Dynamical stirring of the disk by a captured satellite can lead
to heating and thickening of the disk. Depending on the direction of the

1



Figure 1: Left: NGC 4039 is an example for a major merger between two disk
galaxies. Tidal arms form as the merging disk galaxies are disrupted. Right: Sur-
face density map of red RGB stars in M31 taken from Ferguson et.al (2002).
Substructure from recent satellite accretion can be seen at large radii. Note in par-
ticular the giant stellar stream close to the southern minor axis that stems from
a satellite that is in the process of being accreted by the Andromeda galaxy at the
very moment.

infall with respect to the rotational direction of the host galaxy, an infalling
satellite can also induce a central bar in the larger galaxy.
Besides using observations, mergers are best investigated theoretically via
computer models (N-body models) of the gravitational forces on individual
particles as the galaxies approach each other. But some simple analytic
approximations give a good general idea of the process. In the following
section the underlying dynamical processes shall be discussed and illustrated
by results from N-body simulations.

2 Dynamical Friction

Not all galactic encounters lead to mergers. Some do and some don’t, de-
pending on the mass and velocity of the two galaxies involved, which will
be shown in more detail in this section. But encounters, no matter if they
lead to mergers or not, change the dynamical state of stars in the encoun-
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Figure 2: A galaxy with mass M is passing a stationary star with mass m that is
located in a second galaxy. v is the velocity of the passing galaxy and b the distance
to the star from its path, e.g. the distance of closest approach.

tering galaxies. Orbital energy of two interacting galaxies is converted into
internal energy within the galaxies and this can lead to merging. When two
galaxies merge, direct hits of stars are very unlikely. This shouldn’t be sur-
prising, considering how small the fraction of the area filled by stars in a
galaxy is. For the solar neighbourhood we typically have 20 stars/pc3 and
the radius of each star is about 0.2Rsun on average. So the fractional area
covered by stars is 10−14! But even though there are almost no direct hits
during the encounter, the dynamical state of the stars changes. The reason
for that is dynamical friction. A mass M doesn’t move unimpeded through
the background ‘sea’ of material: as M moves forward, the other objects are
gravitationally pulled towards its path with the closest one feeling the largest
force. This produces a region of enhanced density along the path with a high-
density ‘wake’ trailing M . Note that we neglect the gravitational potential
generated by this sea of stars so that the motion of each star is solely deter-
mined by the gravitational force from M (‘Jeans swindle’). The dynamical
friction can then be calculated as a net gravitational force on M that opposes
its motion. Kinetic energy is transfered from M to the surrounding material
as M ’s speed is reduced. Physical quantities envolved in this must be the
mass M , its velocity vM and the mass density of the surrounding objects ρ.
In the following a simplified derivation of the deceleration effect is shown (see
also Sparke & Gallagher (2000)). Imagine a galaxy of mass Mg moves with
a velocity v past a stationary star of mass m in a second galaxy at distance b
from its path. The situation in illustrated in Fig. 2. If we measure the time
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from the moment of closest approach t0 at impact parameter b, we know

that the distance between star and galaxy at time t is:
√

(b2 + v2t2). Then
we get for the component of the force perpendicular to the motion:

F⊥ =
Gm⋆Mgb

(v2t2 + b2)
= M

dv⊥
dt

(1)

(2)

From that we can get the velocity of the galaxy perpendicular to the motion
of the star at time t after the closest approach:

∆v⊥g =
1

Mg

∫

∞

−∞

F⊥dt =
2Gm⋆

bv
(3)

(4)

Because of conservation of momentum we get for the velocity of the star:

∆v⊥⋆ =
2GMg

bv
(5)

(6)

So the total gain in kinetic energy is:

∆K⊥ = K⊥g + K⊥⋆ = 0.5Mg∆v2

⊥g + 0.5m⋆∆v2

⊥⋆ =
2G2m⋆Mg(m⋆ + Mg)

b2v2
(7)

with the gain in kinetic energy being much bigger for the star than for the
galaxy. This energy gain comes from the forward motion of the galaxy, that
therefore must slow down by an amount ∆v. If we match the loss in kinetic
energy of the galaxy in forward direction with the gain of kinetic energy in
perpendicular direction we get:

∆K⊥ = ∆Kloss,⋆ + ∆Kloss,g (8)

⇔ ∆K⊥ =
Mgv

2

2
−

Mg(v
2
− ∆v2)

2
−

m⋆

2
(
Mg

m⋆
∆v)2 (9)

(the reduced velocity of the star stems from conservation of momentum).
Under the assumption that ∆v ≪ v and m⋆ ≪ Mg we get for the change in
velocity:

∆v ≃
∆K⊥

Mgv
=

2G2m⋆Mg

b2v3
(10)
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We will get the overall rate of change of the forward velocity of the galaxy if
we integrate over stars at all possible impact parameters:

dv

dt
= −

∫ bmax

bmin

2G2m⋆Mg

b2v3
× nv2πb db =

4πG2m⋆Mgn

v2
ln(bmax/bmin) (11)

with n = number density of stars, vdt × 2πb db= volume of the cylindrical
shell at impact parameter b swept out in time dt. Roughly the rate of change
in velocity simplifies to:

dv

dt
≃ −

4πG2Mgρ⋆

v2
, ρ⋆ = nm⋆ (12)

This is a simplified version of the so called Chandrasekhar formula.
For a uniform density in the field of matter, with matter particles significantly
lighter than the major particle under consideration, and with a Maxwellian
distribution for the velocity of the matter particle, the dynamical friction
force is as follows:

fdyn = M
dvM

dt
= −

4πln(bmax/bmin)G2M2ρ

v3
M

vM (13)

Eq. (12) shows, that the slower the galaxy Mg moves, the larger its deceler-
ation is. Merging can only happen if the deceleration is large enough, which
requires a small relative velocity and a high mass density of stars. The one
galaxy will then fall in towards the other after a number of closer and closer
passages. The larger galaxy will hereby be slowed more, this means that
larger neighbours will be swallowed first. This phenomenon is also called
’galactic cannibalism’. For the Milky Way for example this means that the
Large Magellanic Cloud is likely to merge with our Galaxy within a few giga-
years but the Globular Clusters, that are about 105 times lighter can stay in
orbit.
Eq. (13) tells us, that, the slower the galaxy’s speed is, the stronger the
dynamical force, the more intense the interaction. But this is only true if
the velocity of the galaxy is not far below the velocity dispersion of the stars
it is passing through. In that case the Navier Stoke’s equation applies and
dv/dt proportional to v.
The timescale for merging can be easily derived by using the simplified Chan-
drasekhar formula (Eq. 12) above:

tmerge ∼
v

dv/dt
∼

v3

4πG2Mgρ⋆
(14)
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This doesn’t tell us the detailed outcome of the process, but we can get a
rough estimate for the timescale within which mergers happen. We would
find that timescales for mergers typically happen within some 109 years.
Even if the initial speed of an infalling galaxy is high enough that merging
can’t happen, this still can affect both galaxies extremely. Dynamical friction
increases the energy in random stellar motions and hence the galaxy’s internal
energy. We can see that by using the Virial Theorem: say the internal kinetic
energy before the encounter is κ0. Then the potential energy is p0 = −2κ0

and the total internal energy of the system before merging is

ǫ0 = κ0 + p0 = −κ0 (15)

A long time after the encounter when the system is virialised and in equilib-
rium again the total internal energy is accordingly:

ǫ1 = −κ1 (16)

The encounter will change the internal energy by ∆κ. It increases the kinetic
energy of the stars. Therefore the internal energy changes as follows:

ǫ1 = ǫ0 + ∆κ (17)

But long after the encounter, when the system is in equilibrium again, the
internal kinetic energy is less than before:

κ1 = −(ǫ0 + ∆κ) = κ0 − ∆κ (18)

During the virialisation process the kinetic energy changes from κ0 + ∆κ to
κ0 − ∆κ by 2∆κ. The virialisation after the encounter changes the internal
energy of the system much more than the encounter itself did. The kinetic
energy has in the end decreased as a result of encounter plus virialisation but
the systems’ energy as a whole of course is more positive. It is less strongly
bound and therefore expands. Typically some stars escape while the others
remain loosely attached as a bloated outer envelope.
Our derivation above is only a rough description of the true picture. Imagine
for example two systems that are on bound orbits around each other. The
various encounters of the stars that then happen during the merger are not
independent of each other because Galaxy M will encounter the same stars
several times and resonance effects can take place. N-body simulations will
give us a more detailed picture as we will see in the next chapter.
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Figure 3: Prograde
encounter (Toomre and
Toomre (1972)). The
infalling galaxy is repre-
sented by a point mass
M , the second galaxy
by a central point mass
surrounded by rings of
massless test particles.
In a prograde encounter
these rings get disrupted
due to resonance effects.
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Figure 4: Retrograde encounter (Toomre and Toomre (1972)). The rings get only
mildly distorted here.

3 Prograde and Retrograde Encounters

In the early seventies, Toomre & Toomre (1972) heavily influenced the field
by reproducing many of the features from interacting galaxies with very sim-
ple simulations. As computing power was more limited than today they used
only a few hundred particles, no gas and no dark matter but still, their simu-
lations revealed some fundamental mechanisms about galaxy mergers. The
infalling galaxy is represented by a point mass M and the second galaxy by
a central point mass M surrounded by rings of massless test particles. Fig.
(3) and (4) show the simulations for prograde and retrograde encounters. In
a prograde encounter the spin of the galaxy and the direction of infall of the
intruder are the same (orbital and spin angular momenta are parallel). In the
retrograde case the direction of infall is anti-parallel to the spin of the galaxy.
The simulations by Toomre & Toomre (1972) show that prograde encounters
merge more rapidly than retrograde encounters. We see in Fig. (3) that for
the prograde case the rings of massless test particles are disrupted by the
time of closest approach. They form thin tidal tails and are then broken up.
In case of the retrograde encounter the rings are just modestly distorted.
The reason for why the prograde encounters are much more violent, is res-
onance - resonance of the orbital frequency in the disk with the orbital fre-
quency of the two encountering galaxies.
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Figure 5: Simulation by Walker, Mihos & Hernquist (1996) of a major merger
of disk galaxies including bulges. The two galaxies are initially in a parabolic orbit
and the encounter is exactly prograde. The timescale for the merger is 1.5 billion
years, the frames are stepped in 30 million year intervals.

The orbital frequency of the test particle is:

ω2

ring =
GM

r3
(19)

The angular velocity of the line connecting the center of the two galaxies at
a minimum distance Dmin is:

w2

orb = (1 + e)(2GM/D3

min) (20)

In the case of resonance:

GM

r3
= (1 + e)

2GM

D3
min

(21)

Resonance occurs at r ∼ 0.5Dmin. A particle on the near side of the disk will
experience the pull of the intruder continuously during prograde resonance
while in the retrograde case the pull is changing sign and the disturbance is
much less considerable.
Since Toomre and Toomre’s pioneering work, simulations of major mergers
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Figure 6: Contours of equal effective potential Φeff for two point masses taken
from Binney & Tremaine (1987). Note the saddle point between the two masses
where δΦeff/δx = 0.

have revealed more and more interesting results. Fig. (5) shows a simulation
done by Walker, Mihos & Hernquist (1996). During this prograde merger
the structure of both galaxies gets disrupted over a time of 1.5 Gyrs. It
is a known fact today that major mergers can result in an elliptical galaxy
although it is not clear yet, how big the fraction of ellipticals made that way
is.

4 Tidal Radii and Satellite Accretion

However, most galaxy collisions do not involve two big galaxies. They involve
a larger galaxy swallowing a smaller companion. Cosmological considerations
suggest, that most galaxies have experienced such a minor merger in their
lifetime.
Accretion also plays an import role during the build-up of the stellar halo. It
is not clear yet, how much of the stellar halo comes from discretely accreted
objects, but simulations suggest that at least 10% of the stars in the stellar
halo stem from satellite accretion. This section will illustrate under which
conditions a satellite galaxy gets torn apart by the gravitational field of the
large galaxy it is orbiting, followed by a short discussion on the implications
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Figure 7: Simulation of a satellite accretion by Walker, Mihos & Hernquist
(1996). The timescale for the capture is 1.5 billion years, frames are stepped in 30
million years intervals. The satellite has a mass of 10% of the disk mass and falls
in on a nearly prograde orbit with an initial inclination of 30 degrees to the plane.

that arise for the host galaxy. Therefore it is necessary to derive an equation
for the tidal radius. For a detailed derivation please see Sparke & Gallagher
(2000) or Binney & Tremaine (1987). Here, a rough discussion of the problem
shall suffice. Consider a satellite of mass m in a circular orbit around a host of
mass M at a distance D. We know the angular velocity around the common
center of mass:

Ω2 =
G(m + M)

D3
(22)

We define a frame of reference rotating uniformly about this center of mass.
Then we can define an effective potential Φeff for the stars’ motion. In this
rotating frame we have the Jacobi integral:

EJ = 0.5v2 + Φeff(r) (23)

In Fig. (6) you can see how the contours of Φeff have a saddle point between
the two masses where δΦeff/δx = 0. If we assume that the mass of the satellite
is much smaller than the mass of the galaxy than we get as a measure of the
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Figure 8: Decay of a prograde satellite orbit. The merger is all over after 1Gyr
(upper and lower left panel). The satellite settles into a low-inclination orbit at
large radii already (lower right panel). It completes less than two orbits before it
arrives at the center (upper right panel).

tidal radius of the satellite:

rJ = (
m

3M + m
)1/3D (24)

This radius is also known as the Roche limit and might be familiar from
stellar physics: in a close binary material can only flow from the secondary
star onto the primary if the secondary fills out its Roche lobe. We have the
same principle here. Stars that are not further away from the satellite center
than rJ will remain bound to it. Stars that lie beyond this radius will be
removed from the satellite by the tidal forces.
The densities at which tidal removal of matter will happen can be derived
as follows: If we take the stellar density of the infalling satellite within the
tidal radius

ρ(rJ) =
m

4

3
πr3

J

(25)
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and compare it to the density of the galaxy within a distance D from its
center

ρ(D) =
M

4

3
πD3

(26)

then we can easily see by plugging in the formula for the tidal radius rJ into
eq. (25), that

ρ(rJ) ∼ ρ(D) (27)

In other words: we would expect an infalling satellite to remain intact in to
a distance D from the larger galaxy such that the density of the galaxy at
that distance equals the mean density of the satellite.
Fig. (7) shows a simulation by Walker, Mihos & Hernquist (1996) that illus-
trates the capture of a dwarf satellite by a disk galaxy with a bulge. In this
simulation, the satellite falls in on a nearly prograde orbit with an inclina-
tion of 30 degrees to the plane. The timescale for the simulation is 1.5 billion
years and the frames are stepped in 30 million years intervals. It is obvious
that the coupling of orbital and rotational motion of this prograde encounter
induces a central bar. Along its orbit the satellite is pulling constantly at
the same position before it gets disrupted.
Fig. 8 additionally illustrates the timescale of the decay from a face-on as
well as an edge-on view. As the satellite orbit decays, its inclination to the
plane becomes less due to the effects of dynamical friction. The orbital en-
ergy and orbital angular momentum go primarily into the stars of the disk.
The disk heats up due to the dynamical stirring but this effect is limited as
the satellite gets stripped at some point. Finally after about 2 orbits the
satellites sinks into the plane and arrives at the center.
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