#### LOFAR Survey Key Project

## Probing the formation and evolution of massive galaxies, AGN, and clusters

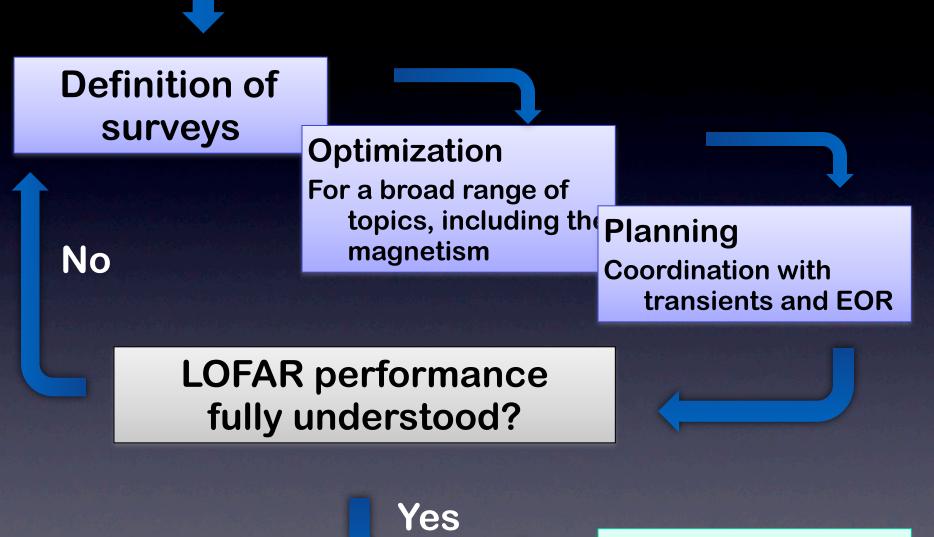
Huub Röttgering Leiden Observatory

# Why surveys?

#### A well defined set of surveys will maximize the scientific usage of LOFAR (cf. Sloan)

- LOFAR is a natural survey instrument
  - Large field of view: 30 MHz : ~10 degrees
  - Every pointing contains a number of Abell and NGC galaxies
- Low radio frequency imaging is all sky imaging
  - Cf Hipparcos, Gaia
  - Need information from a large fraction of the sky for proper calibration of for example the ionosphere
- A natural compliment
  - to other LOFAR key programs (Reionisation, transient surveys)
  - to IR missions (Spitzer, Herschel), dark energy missions (Euclid etc.), Planck, JCMT+SCUBA2, optical/ IR surveys (Pannstars) etc.
- Data reduction is a real challenge and computer intense: delivering final data products is a real challenge

#### Note: there is also open time


The Exploration of the unknown (Kellerman et al. Decadal White paper)

- The excitement of the next generation of astronomical facilities is not in the old questions which will be answered, but in the new questions that they will raise
- Major discoveries (AGN, pulsars masers, exo-planets etc.), were the results of building powerful new instrument and not the result of trying to test any particular model or trying to answer a previously posed question.

## Overview

- Survey science
- Current survey plans
- Ionospheric calibration
  - 3-dimensional phase screens
  - Residual PSF variations
- Organisation

#### **Key drivers**





## Main Drivers

• 100 z ~ 6 radio galaxies

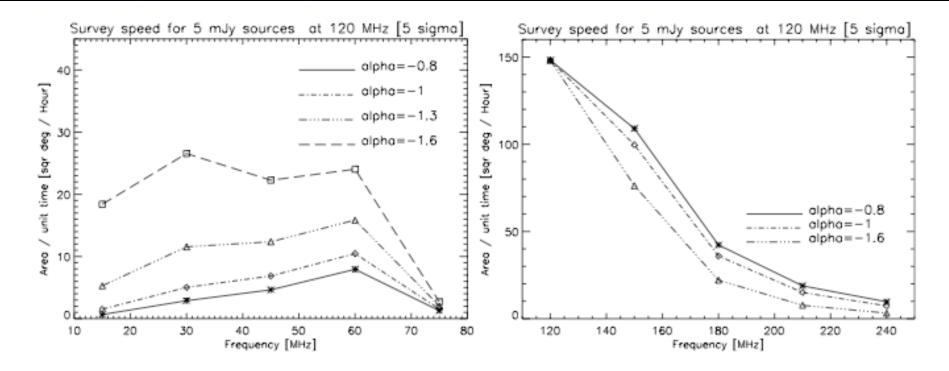
Formation and evolution of massive galaxies, black holes and clusters at/near the epoch of reionisation

I00 cluster radio sources at z > 0.6

Dynamics of cluster gas, evolution of cluster wide magnetic fields

- 10 clusters of starbursts starbursts at z>2
  - SFR ~ 10 M0/yr at z=2-3
- Serendipity

<< 30 MHz


#### Other important topics

- AGN and radio source physics
  - Giant radio sources
  - Young radio sources
  - Feedback processes
- Nearby galaxies
  - Warm ISM
  - Halos
- Lensing
- Cosmological sudies
  - Baryonic oscillations
  - Integrated Sachs-Wolf effect
- Galactic radio sources
  - Supernova Remnants
  - HII regions
  - ``Diffuse structures''

### Considerations

- Survey speed
- Wide bandwidth
  - RM synthesis for the collaboration with the magnetism KSP
  - Calibration
  - Spectral properties
- Tiling of the beams

#### Survey speed (100 km; 1 beam 8 MHz) Sweet spots: 15-60 MHz (!) and 120 MHz



**Figure 7:** Using one 4 MHz beam, the survey speed taken as the area on the sky covered per unit time deep using enough to detect a 5 mJy source at 120 MHz at the 5 sigma level as a function of frequency. (left) Low-band system, (right) High-band system.

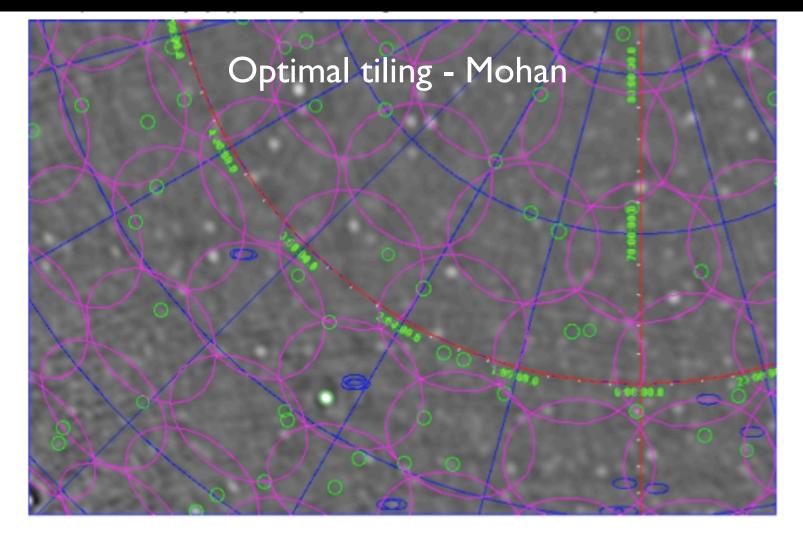

#### Wide bandwidth

Table 5: LOFAR filter bandpasses

| Filter | LBA/HBA | Frequency range |
|--------|---------|-----------------|
| 1      | LBA     | 10–90 MHz       |
| 2      | LBA     | 30–90 MHz       |
| 3      | HBA     | 110–190 MHz     |
| 4      | HBA     | 170-230 MHz     |
| 5      | HBA     | 210–270 MHz     |
|        |         |                 |

 Table 6: LOFAR survey frequency setups

| Nominal survey frequency | Frequency range  | Total bandwidth | LOFAR band pass |
|--------------------------|------------------|-----------------|-----------------|
| (MHz)                    | (MHz)            | MHz             |                 |
| 15                       | 15 - 23          | 4               | 10 - 90         |
| 30                       | 30 - 50          | 16              | 30 - 90         |
| 60                       | 60 - 80          | 16              | 30 - 90         |
| 120                      | 120 - 150 (90 %) | 14.5            | 110 - 190       |
|                          | 150 - 190 (10 %) | 1.5             |                 |
| 150                      | 126 - 174        | 48              | 110 - 190       |
| 200                      | 180 - 210        | 16              | 170 - 230       |



**Figure 5:** A blow-up of figure 4. Also indicated are in green galaxies from the list in the Appendix and in blue clusters of galaxies also from the list in the Appendix.

#### **Proposed LOFAR Survey Specifications**

H. J. A. Röttgering<sup>1</sup>, P.N. Best<sup>2</sup>, M.J. Jarvis<sup>3</sup> P. N. Barthel<sup>4</sup>, M. Brüggen<sup>5</sup>, G. Brunetti,<sup>6</sup> K.T. Chyży<sup>7</sup>, J. Conway<sup>8</sup>, M. Lehnert<sup>9</sup>, G. K. Miley<sup>1</sup>, R. Morganti<sup>4,10</sup>, I. Snellen<sup>1</sup> for the LOFAR survey team

Version 2.3 15-June-2009



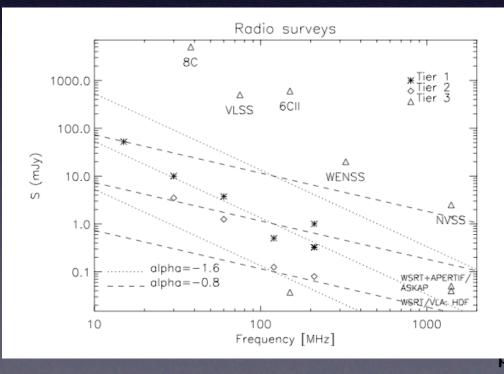



Table 7: Tier 1: The "Large Area" survey

| Area    | rms                                                           | BW                                            | Sources <sup>2</sup>                                      | Integration time <sup>3</sup>                                                          | Number                                                                                                     | Days <sup>4</sup>                                                                                                                    | Total <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $deg^2$ | mJy                                                           | MHz                                           | /beam                                                     | hrs                                                                                    | pointings                                                                                                  | 1                                                                                                                                    | sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20626   | 10                                                            | 4                                             | 17811                                                     | 100                                                                                    | 100                                                                                                        | 21                                                                                                                                   | 1.4e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20626   | 2                                                             | 16                                            | 19106                                                     | 22.3                                                                                   | 218                                                                                                        | 42                                                                                                                                   | 3.5e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20626   | 0.75                                                          | 16                                            | 30124                                                     | 20.6                                                                                   | 203                                                                                                        | 36                                                                                                                                   | 5.1e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20626   | 0.1                                                           | 16                                            | 30016                                                     | 3.8                                                                                    | 1021                                                                                                       | 33                                                                                                                                   | 2.8e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20626   | 0.2                                                           | 16                                            | 2472                                                      | 1.0                                                                                    | 3021                                                                                                       | 25                                                                                                                                   | 7.0e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1088    | 0.065                                                         | 16                                            | 9373                                                      | 9.3                                                                                    | 150                                                                                                        | 12                                                                                                                                   | 1.4e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | deg <sup>2</sup><br>20626<br>20626<br>20626<br>20626<br>20626 | deg2mJy2062610206262206260.75206260.1206260.2 | deg2mJyMHz2062610420626216206260.7516206260.116206260.216 | deg2mJyMHz/beam20626104178112062621619106206260.751630124206260.11630016206260.2162472 | deg2mJyMHz/beamhrs2062610417811100206262161910622.3206260.75163012420.6206260.116300163.8206260.21624721.0 | deg2mJyMHz/beamhrspointings2062610417811100100206262161910622.3218206260.75163012420.6203206260.116300163.81021206260.21624721.03021 | deg <sup>2</sup> mJy         MHz         /beam         hrs         pointings           20626         10         4         17811         100         100         21           20626         2         16         19106         22.3         218         42           20626         0.75         16         30124         20.6         203         36           20626         0.1         16         30016         3.8         1021         33           20626         0.2         16         2472         1.0         3021         25 |

- 120 MHz: workhorse survey:
  - <u>depth and area</u> (50% of the sky!) driven by ~100 radio halos at z~0.6
- 15,30, 60 MHz:
  - <u>depth and area</u> driven by  $\sim 100$  hzrgs at  $z\sim 6$ ,
  - $\alpha_{60}^{30} = -1.6, \alpha_{30}^{15} = -1.3$
- 200 MHz
  - 150 pointings/1000 deg<sup>2</sup>: matching 60 MHz with  $\alpha$ =-0.75
    - 13 famous blank-field regions with superb degree-scale multi-wavelength data.
    - 60 nearby clusters or superclusters;
    - 60 nearby galaxies.
  - Shallow all sky

#### Fudge factor = 2.5

Table 8: Tier 2. The "Deep" survey

| f1  | Area    | rms   | BW  | Sources <sup>2</sup> | Integration time <sup>3</sup> | Number    | $Days^4$ | Total <sup>2</sup> |
|-----|---------|-------|-----|----------------------|-------------------------------|-----------|----------|--------------------|
| MHz | $deg^2$ | mJy   | MHz | /beam                | hrs                           | pointings |          | sources            |
| 30  | 2806    | 0.7   | 16  | 53523                | 204                           | 25        | 44       | 1.6e+06            |
| 60  | 3025    | 0.25  | 16  | 96763                | 207                           | 25        | 44       | 2.9e+06            |
| 120 | 555     | 0.025 | 16  | 204070               | 67                            | 25        | 14       | 5.6e+06            |
| 210 | 362     | 0.016 | 16  | 66635                | 172                           | 50        | 74       | 3.5e+06            |

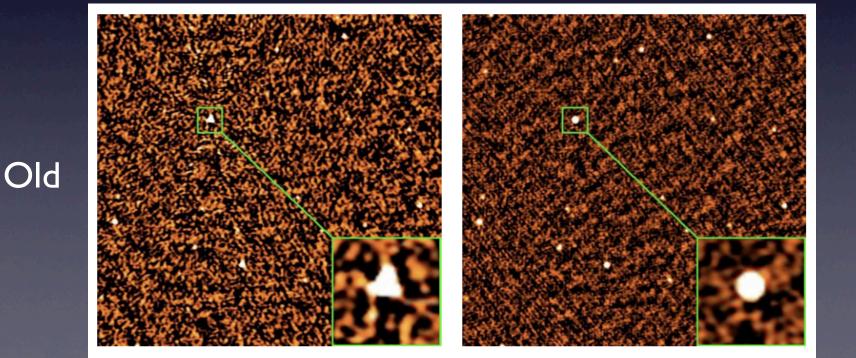
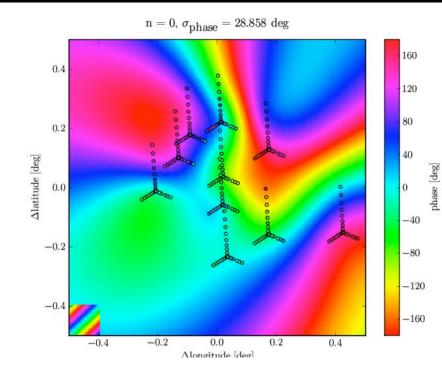

- 120 MHz: starburst galaxies (z=0.5: 10 M/yr; z=2.5: 100Mhz);
- 25 regions:
  - 13 famous blank-field regions with superb degree-scale multi-wavelength data.
  - 6 nearby clusters or superclusters;
  - 6 nearby galaxies.
- 30 and 60 MHz matches all sky with  $\alpha = -1.4$
- 200 MHz matches 120 MHz with  $\alpha$  = -0.8

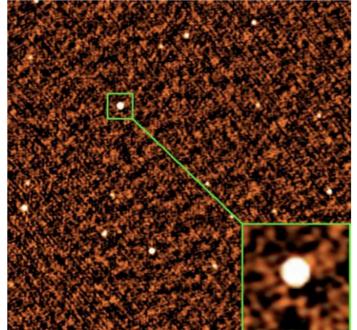
 Table 9: Tier 3. The "Ultra Deep" survey

| f <sup>1</sup> | Area    | thermal rms | BW  | Sources <sup>2</sup> | Integr, time | Number    | Days <sup>3</sup> | Total <sup>2</sup> |
|----------------|---------|-------------|-----|----------------------|--------------|-----------|-------------------|--------------------|
| MHz            | $deg^2$ | mJy         | MHz | /beam                | hrs          | pointings |                   | sources            |
| 150            | 71      | 0.0062      | 48  | 543798               | 221          | 5         | 28                | 2.9e+06            |


- Clusters of starbursting galaxies with 20-30 M/yr at z=2.5: 100M/yr at z=8
- Targetting famous extra-galactic fields


Ionospheric model fit (PhD Intema) VLA@74 MHz, 80" res., 2 deg. FOV

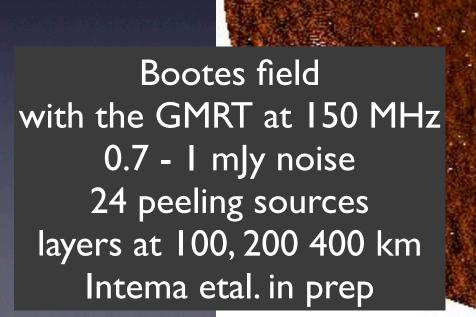



new

Ionospheric model fit (PhD Intema) VLA@74 MHz, 80" res., 2 deg. FOV



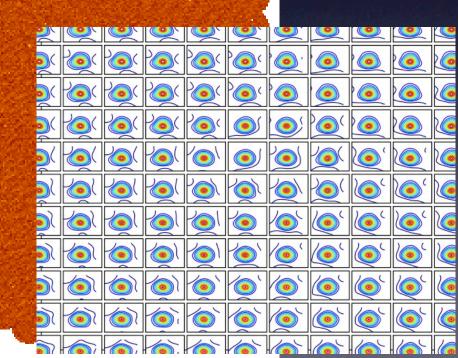



Old



new

#### **lonospheric** calibration


- Ionospheric obervations from the VLSS 74 MHz survey
  - Statistics: Cohen & HR, 2009arXiv0905.4501C
  - Analytic fitting of disturbances van der Tol et al. thesis chapter
- Calibration using phase screens
  - 2-d screen: Intema et al. 2009arXiv0904.3975 and being implemented in BSS
  - 3-D screen paper: Intema et al.: thesis chapter
- Next steps:
  - Testing 2D model in BBS
  - BSS implementation of the 3D model
  - Time evolution



3.80209 deg

#### PSF variations due to imperfect calibration -Mohan





# Organisation

- Executive body: Core team
  - Huub Rottgering, Peter Barthel, Philip Best, Marcus Brüggen, Gianfranco Brunetti, Krzysztof Chyzy, John Conway, Matt Jarvis, Matt Lehnert, George Miley, Raffaella Morganti, Ignas Snellen
- Members
  - appointed by national consortia
  - Selected for specific expertise
- Rules and regulations document
  - <u>www.strw.leidenuniv.nl/lofar/</u>

# Science group (SG) and chairs

- The highest redshift radio sources George Miley
- Starforming galaxies at moderate and high redshifts- Matt Lehnert
- Clusters and cluster halo sources Marcus Brüggen/Torsten Ensslin
- AGN at moderate redshifts Philip Best
- Gravitational lensing Neal Jackson
- Detailed studies of low-redshift AGN Raffaella Morganti
- Nearby galaxies John Conway
- Cosmological studies Matt Jarvis
- Galactic radio sources Marijke Haverkorn / Glenn White

#### LOFAR: 2011

- Reionisation detected and generally viewed as major breakthrough
- The nearby filamentary cosmic web is fully traced at low radio frequencies
- >10<sup>21</sup> cosmic rays are much more common that foreseen and theorist have great difficulties explaining this
- A new category of exo-planets detected through their radio emission.

and much more ...



## Commissioning

- Aims
- List of observations
- Organisation
  - Manpower
    - PhD students /postdocs
  - Busy week
  - List of science projects/papers
  - Proposals
- Some input for proposals

# Aims of Commissioning

- Which dipoles to use to optimize survey speed?
  - What tapering?
  - Trade-off between sensitivity, FOV and low side-lobe levels
  - Station beam stability, pointing accuracy
- Which frequency setups are best for our purpose?
  - RFI
  - spectral index, polarization and RM determination
- How to deal with the ionosphere
  - 2D / 3D models?
  - Time resolution?
- Quality of the final maps: uniformity of noise, detectibility of extended structure, stability of the psf and sensitivity
  - all as a function of declination
- Overall issue: what limits the dynamic range?
- Long baseline to be included in any observations

# First list of commissioning observations

- I. At the full range of frequencies: a low and high elevation field (Bootes and the XMM-LSS?)
  - Especially
    - at 30 MHz: different selections of dipoles, also combined with 60 Mhz observations
    - at 120 MHz: range of bandwidths
    - how low can we go (in frequency and declination)?
    - how well at zero declination?
- At the survey frequencies
  - two deep fields
    - 5 pointings in a hexagonal grid
    - At a depth comparable to the proposed 'tier-I' all sky surveys
      - ~100 hours for the high declination and ~200 hours for low declination field
  - Lenc field
  - Coma cluster
  - A giant radio source
  - Deep observations at a very bright source
  - A simple galactic field (CTA-1 ?)
  - Galactic center
  - All the observations with long baselines at 0.25 sec.



- One week with hand on reducing LOFAR data with the aim of debugging the system
- (a bit of science)
- end of September/beginning of october?

| Fabien    | Batejat     | С | John Conway        | phd  |
|-----------|-------------|---|--------------------|------|
| Annalisa  | Bonafede    | С | Luigina Feretti    | phd  |
| Francesco | de gasperin | С | Merloni            | phd  |
| Robert    | Drzazga     | С | Krzysztof Chyzy    | phd  |
| Louise    | Ker         | С | Philip Best        | phd  |
| Elzbieta  | Kuligowska  | С | Marek Jamrozy      | phd  |
| Giulia    | Macario     | С | Gianfranco Brunett | phd  |
| Hanifa    | Temourian   | С | Matt Jarvis        | phd  |
| Reinout   | van Weeren  | С | Huub Rottgering    | phd  |
| Laura     | Birzan      | С | Huub Rottgering    | post |
| Rossella  | Cassano     | С | Gianfranco Brunett | post |
| Sven      | Duscha      | С | Torsten Ensslin    | post |
| Tom       | Dwelly      | С | Judith Croston?    | post |
| Tim       | Garn        | С | Philip Best        | post |
| Annette   | Haas        | С | Marcus Bruggen     | post |
| George    | Heald       | С | Raffaella Morganti | post |
| John      | McKean      | С | Raffaella Morganti | post |
| Niruj     | Mohan       | С | Huub Rottgering    | post |
| Emanuela  | Orru        | С |                    | post |
| David     | Rafferty    | С | Huub Rottgering    | post |
| Nick      | Seymour     | С | Matthew Page       | post |
| Bas       | van der Tol | С | Huub Rottgering    | post |

Busy weekers/ commissioners

2 co-organisers?

| Philip   | Best       | c? |
|----------|------------|----|
| Marcus   | Brüggen    | c? |
| John     | Conway     | c? |
| Huub     | Röttgering | С  |
| Marijke  | Haverkorn  | С  |
| Neal     | Jackson    | С  |
| James    | Anderson   | c? |
| Rob      | Beswick    | c? |
| Aaron    | Cohen      | c? |
| Chiara   | Ferrari    | С  |
| Matthias | Hoeft      | С  |
| Enno     | Middelberg | С  |
| Isabella | Prandoni   | c? |

#### Busy weekers/ commissioners

# Commissioning proposal input

- General science case
- List of specific projects and related papers
  - Names!
- Main issues for commissioning
- Specification of observations
  - area, depth, frequencies ...
  - long baselines
- Data reduction plan
  - Names, (also for the busy week)

## Science working groups

- I. Commissioning
  - Fill-out a 3-D matrix
    - 9 science working groups
    - 6 major commissioning aims
    - ~10 different observations
  - Sketch a commissioning proposal
  - Make a planning
- 2. Comment overall survey plan
  - depth, areas, frequencies
  - source and field lists
  - priorities/schedules
- 3. Comment on MS<sup>3</sup>
  - depth, area, frequencies

| Freq  | wavelength | $\Delta S_{20}$ | $\Delta S_{18+18}$ | $\Delta S_{25+25}$ |
|-------|------------|-----------------|--------------------|--------------------|
| (MĤz) | (m)        | (mJy)           | (mJy)              | (mJy)              |
| 15    | 20         | 198             | 110                | 79.2               |
| 30    | 10         | 36              | 20                 | 14.4               |
| 45    | 6.7        | 19.8            | 11                 | 7.9                |
| 60    | 5.0        | 13.0            | 7.2                | 5.2                |
| 75    | 4.0        | 21.60           | 12                 | 8.6                |
| 120   | 2.5        | 0.74            | 0.41               | 0.30               |
| 150   | 2.0        | 0.58            | 0.32               | 0.23               |
| 180   | 1.7        | 0.67            | 0.37               | 0.27               |
| 210   | 1.4        | 0.76            | 0.42               | 0.30               |
| 240   | 1.2        | 0.83            | 0.46               | 0.33               |

 Table 1: Sensitivity table for 1h integration time, 2 polarizations and 3.57 MHz bandwidth

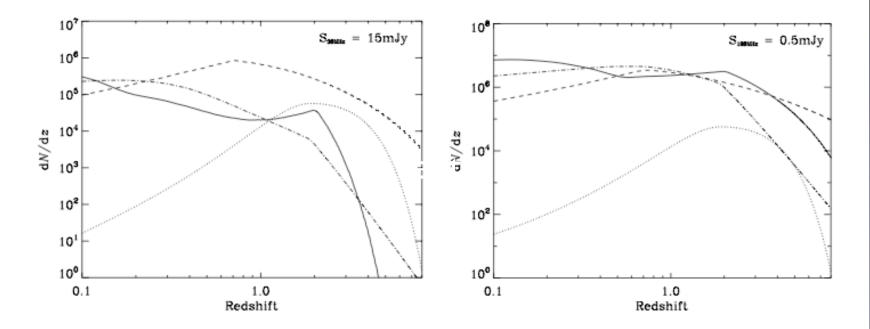

# LOFAR-20 only a factor of ~4 'slower' than

Table 7: Tier 1: The "Large Area" survey

| f1  | Area    | rms   | BW  | Sources <sup>2</sup> | Integration time <sup>3</sup> | Number    | Days <sup>4</sup> | Total <sup>2</sup> |
|-----|---------|-------|-----|----------------------|-------------------------------|-----------|-------------------|--------------------|
| MHz | $deg^2$ | mJy   | MHz | /beam                | hrs                           | pointings | -                 | sources            |
| 15  | 20626   | 10    | 4   | 17811                | 100                           | 100       | 21                | 1.4e+06            |
| 30  | 20626   | 2     | 16  | 19106                | 22.3                          | 218       | 42                | 3.5e+06            |
| 60  | 20626   | 0.75  | 16  | 30124                | 20.6                          | 203       | 36                | 5.1e+06            |
| 120 | 20626   | 0.1   | 16  | 30016                | 3.8                           | 1021      | 33                | 2.8e+07            |
| 200 | 20626   | 0.2   | 16  | 2472                 | 1.0                           | 3021      | 25                | 7.0e+06            |
| 200 | 1088    | 0.065 | 16  | 9373                 | 9.3                           | 150       | 12                | 1.4e+06            |

#### 30 MHz

#### 120 MHz



**Figure 9:** Number of expected FRII radio sources (dotted), FRI radio sources (dashed), radio-quiet quasars (dot-dashed) and star-forming galaxies (solid) as a function of redshift for the 30 MHz (left) and 120 MHz (right, update) all sky LOFAR surveys.

## Busy week/ commissioners

#### Clusters

- Bonafeda, Macario, Birzan, Rafferty, Duscha, Orru, Bruggen, Ferrari, Hoeft, Edge
- Galaxies
  - Robert Drzaga, Tigran, Heald (?), Beswick (?), Batajat, Conway
- Milky Way
  - Marijke, ~2 PhD position with Marijke and Glenn



- input on comissioning
- input for the survey plan
- agenda

## Commissioning

- chairs send me
  - their notes
  - list of commissioning observations
  - list of ms3 projects
  - names
    - busy weeks
    - projects/papers

# Survey plans

- lists of sources/fields
  - galaxies
  - clusters
  - blank fields
- talk to potential collaborators

## Next steps

- 2 small busy weeks
- Cluster meeting Oct Bologna?
- Bremen Nov/Dec decision in September on size
  - planning/priorities
  - first data
- Leiden LC March 8-12
  - ms3 data / commissioning data



- chairs reporting
- select blank fields
  - info on Herschel/Atlas Matt
- individual contribution
  - Nick on Askap
  - Merloni

#### C Deep extragalactic deep fields

Suitable blank fields for LOFAR Deep Surveys

| XMM-LSS       | 02 2 | 5 00 | -04 3 | 0 00 | DXS | PS1 | CFHTLS | Subaru |       |
|---------------|------|------|-------|------|-----|-----|--------|--------|-------|
| IFA/Lynx      | 08 4 | 3 00 | +44 4 | 0 00 |     | PS1 |        |        |       |
| COSMOS        | 10 0 | 0 00 | +02 1 | 2 00 |     | PS1 |        |        |       |
| Lockman Hole  | 10 5 | 7 00 | +57 4 | 0 00 | DXS | PS1 |        |        |       |
| NGC4258-field | 12 1 | 8 57 | +47 1 | 8 14 |     | PS1 |        |        |       |
| HDF+HFFs ??   | 12 3 | 6 49 | +62 1 | 2 58 |     |     |        |        |       |
| VISTA-Videol  | 14 0 | 0 00 | +05 0 | 0 00 |     | PS1 |        |        |       |
| Groth Strip   | 14 1 | 7 00 | +52 3 | 0 00 |     |     | CFHTLS |        |       |
| Bootes        | 14 3 | 2 00 | +34 3 | 0 00 |     |     |        |        | NDWFS |
| Elais N1      | 16 1 | 0 00 | +55 0 | 0 00 | DXS | PS1 |        |        |       |
| NEP           | 18 0 | 0 00 | +66 3 | 3 00 |     |     | (CFHT) |        |       |
| VIMOS 4/SA22  | 22 1 | 7 00 | +00 2 | 0 00 | DXS | PS1 |        |        |       |
| DEEP2         | 23 3 | 0 00 | +00 0 | 0 00 |     | PS1 |        |        |       |

# fields prio

- priol:
- xmm-lss
- cosmos
- bootes
- LH
- prio2
- ENI, NEP, FLS, SSA22
- prio3