LOFAR Technical Status

4C+65.20

C + 62.25

40+65.19

4C+66.17

LOFAR Surveys Meeting 17 June 2009 #C+75.05

4C+72.20 4C+74.20

Ʊ69.17

Michael Wise (on behalf of the entire LOFAR team)

LOFAR Technical Status

#C+75.05

4C+72.20 4C+74.20

0+7046+71,15

4C+65.20

C + 62.25

£60.21

40+66.17

40+65.19

<u>Outline</u>

- System Overview
- Recent Improvements
- Pipeline Development
- Timelines

System Overview

- Station Hardware
- Central Processing (CEP)
- Control System (MAC/SAS)

LOFAR "Superterp"

Station CS302

2 Barel

Station and CEP Hardware

- Station 302 complete and almost done with verification
- Station 307 complete modulo some connectivity issues
- Station 503 LBA installed, HBA complete next week
- Two teams working in core (106, 208, 301, ...)
- First batch of offline cluster hardware has arrived
- Installation and testing underway

LOFAR Antennas

Low band antenna: 30 – 80 MHz 48/96 antennas per station

High band tiles:120 – 240 MHz 96 tiles/station, 4x4 antennas/tile

- 36 NL + 8 EU stations of dipoles
- Replace big dishes by many cheap dipoles
- No moving parts: electronic beam steering
- Flexible digital beam forming

Top Level Architecture

Station Architecture

Data Flow

- Station level processing *Amplification, digitization, filtering, beam-forming, transient ram buffers (TBB)*
 - Central processing *Delay compensation, correlation, calibration, data reduction pipelines (BG/P, storage, offline cluster)*

Clock frequency	160	200	MHz
Sub-band width	156.25	195.3	kHz
# sub-bands / RSP	62	62	
Total # sub-bands	248	248	
Bandwidth	38.75	48.44	MHz
Data rate / RSP	620	775	Mb/s
Total data rate	2.48	3.1	Gb/s

Expected availability: June 2009

Now!

Expected availability: late 2009/early 2010

Central Processing

- BG/P Data reception, transpose, correlation, beam-forming, 41. 8 TFLOPS, 6TB memory
 - Storage system *Short term storage of data, ~2 PByte, 50-100 Gbps I/O*
 - Offline cluster *Calibration, data products, off-line analysis, ~5 TFLOPS*

Performance Tests

observation mode	A	В	С
#stations	64	64	48
#subbands	248	496	992
#bits/sample	16	8	4
obs. bandwidth (MHz * #beams)	48.4	96.9	194
input bandwidth (Gb/s)	64 * 3.1	64 * 3.1	48 * 3.1
output bandwidth (Gb/s)	62 * 0.58	62 * 1.2	62 * 1.3
CPU load compute nodes	35%	70%	85%
CPU load I/O nodes	67%	81%	80%
data loss	~ .0001%	~ 0.01%	~ 0.01%

- 1 rack = Simulates data
 (64 stations @ 3.1 Gbits/s)
- 1 rack = Correlator
- 1/2 rack = Dumps visibilities

LOFAR

Phase 1 Offline Cluster

Phase 2 Offline Cluster

Pipeline Development

- Standard Imaging Pipeline
- Pulsar Pipeline
- VHE Cosmic Ray Pipeline
- RM Synthesis Imaging
- Solar Spectrometer Mode

Standard Imaging Pipeline

SB0

SB0

SB0

Distributed Processing

Default Pre-Processing Pipeline (DPPP)

- Automatic flagging *Multiple algorithms*
 - Data compression *Time and frequency averaging*
 - Simple cal. corrections *Clock phases, A-team subtraction*

Functionality

- Flagging
 - Frequency Flagger
 - Complex Median Flagger
 - Modified Complex Median Flagger
 - Binning Flagger
 - MAD Flagger
- Application of global bandpass correction
- Correction for clock drifts
- Solve for and subtract the A-Team
- Compression of data
 - Time
 - Frequency
- Combining of Subbands / MSs

Status

To be commissioned

To be implemented To be implemented To be implemented Ready

Ready

BBS: Global Solver

• BBS supports parameter fitting across sub-bands

BBS: Capabilities

- Parameter types
- Constants
- Polynomials of frequency and/or time
- Source models
- Point source
- Elliptical Gaussian: to be tested
- Shapelets
- (Higher order) Spectral index
- Instrument models
- Bandpass
- (Directional) Gain (Simultaneous)
- Basic Ionospheric model (SPAM based; Mevius, Intema)
- Beam models
 - Analytical dipole model (S. Yatawatta)
 - Semi-analytical dipole model (J.P. Hamaker)
 - Full station beam
- Excising unphysical solutions: in progress

(courtesy R.Nijboer, J. van Zwieten)

BBS: WSRT Ionosphere

Residual image using 5 Peeling solutions

BBS: WSRT Ionosphere

Residual image using 8 parameter phase screen

CS1 All-sky Image

- GSM stored as a database
 - Many predictive functions available
 - Python interface for access
 - Filled with VLSS, WENSS, NVSS, 3C, 8C, ...
- LSM currently a text file
 - To be upgraded to a database

Imaging Summary

Current status

- Prototype working on CEP
- DP3, MWimager, source detection integrated
- Processes multiple sub-bands in parallel
- Prototype GSM database installed

Upcoming work

- Integrate BBS
- Integrate GSM
- Package data products
- Delivery end of June
- Testing and profiling
- Major cycle implementation

L2007_03463, 48 sub-bands

•

•

Known Pulsar Pipeline

Streaming version of HDF5 BF data • writer working

Next steps

- Integrate BF data writer with OLAP •
- Populate headers of BF data files •
- Streaming down-sampling
- Post-processing pipeline

Known Pulsar Pipeline

(courtesy J. Hessels)

PSRB0329+54 with the 48 HBA tiles of CS302, 48MHz, 500 sec. "Awesome signal to noise!"

Known Pulsar Pipeline

PSRB0329+54 with the 48 HBA tiles of CS302, 48MHz, 64 hr continuous observation. Excellent system stability.

Dynamic Spectra

Jupiter bursts (courtesy J.-M. Grießmeier)

First Correlation CS10-Nancay

(courtesy J.-M. Grießmeier)

LOFAR

VHECR Pipeline

AST(RON

Current Status

- LCU trigger algorithm implemented
- Manual TBB data writer working
- Scripts to initiate TBB dumps
- SkyMapper almost ready

Near-field imaging

Next steps

- Testing of LCU trigger code
- Testing of SkyMapper
- TBB data writer under MAC control
- CR post processing pipeline

(courtesy L. Bahren, M. Eikelboom & A.-J. Boonstra)

(courtesy A. Horneffer)

HBA Dynamic Spectrum

(courtesy A. Horneffer)

Timelines

Hardware Roll-out

di Name	Apr 1/9 May 09 Jun 09 Jun 09 Aug 09	Sep 09 10ct 09 Nov 1
Core station system validation & handover		102 00 27 100 00 40 141 14. 142 141 40 1
CS002		• 01-09
CS003		07-09
C5004		14-09
C\$005		23-09
CSOOL		02-10
CS007		13-10
CS012		★ 22-09
CS017		♠ 29.09
CS021	▲ 14-07.	
C5024		23-09
C5026		♦ 28-08
C\$030	12.	08
CSC0/2	- 96-07	
CS027 (RS101)		4 07-09
CS201 (RS201)		20-08
CS301 (R\$301)	17-06	
CS401 (RS401	★ 26-06	
CS501 (RS501)		15-09
Remote station system validation & handover		
CS/RS302 Boven op Hondsrug lav maardee Extag	♦ 19-05	
RS503 Koodijk Ion westen Achterste Diep	15-06	
RS307 Oldwein	◆ 18-0€	
RS205 Schoonobwek	B8-07	
RS106 Vallhermond	13-07	
RS306 Exertshoar	▲ 11	1-08
CS/RS 109 Exteerween		
RS104 Neuw-Bunen		

$Milestones \Rightarrow LOFAR 3 (mid-June)$ LOFAR 10 (mid-Aug.)LOFAR 20 (late-Sept.)

0.5 CEP (mid-June) Superstation (mid-Oct.)

Pipeline Roll-out

Milestones ⇒ Standard imaging (June 09) Known pulsars (July 09) VHECR (Aug. 09)

Phase I

AST(RON

Present - Aug 2009

Station and Pipeline Integration

Operations I

- Basic data-taking
- Manual pipeline execution
- No parallel observations
- Station test procedures

Station Integration I

- LOFAR01
- LOFAR03
- LOFAR05
- LOFAR10
- LOFAR10+INTBL04

Pipeline Integration I

- Standard Imaging
- Known Pulsars
- VHECR mode

Phase II

Sept 2009 - Dec 2009

Pipeline Testing and Validation

Operations II

- Routine data-taking
- Automatic pipeline execution
- Limited parallel observations
- Initial archive integration

Pipeline Validation I

- MSSS
- Timing survey
- Offline transient searches
- Latency tests
- RM experiments

Station Integration II

- LOFAR15
- LOFAR20
- LOFAR20+INTBL06
- Core Superstation

Phase III

Jan 2010 - Jun 2010

Full Array Testing and Early Science

Operations III

- Automatic pipeline execution
- Routine parallel observations
- Routine archive operations
- Support direct storage modes

Pipeline Integration II

- Standard Imaging upgrades
- Transient Detection
- Pulsar Surveys
- Solar Spectral mode
- UHEP mode

Station Integration III

- LOFAR36
- LOFAR36+INTBL08

The End