MSSS and LOFAR Commissioning

LOFAR Surveys Meeting 17 June 2009

Michael Wise (Ger de Bruyn and R. Nijboer) We can distinguish 3 different phases for commissioning activities:

- Before MSSS: Jun-Oct 2009 from $1 \Rightarrow 20$ stations
- During MSSS: Nov-Jan 2010 20 stations (+ 3-5 European)
- After MSSS: Jan-Aug 2010 $30 \Rightarrow 40$ stations

Assuming start of regular LOFAR observing in mid to late 2010 (?)

Why do a MS³ ?

LOFAR needs a Global Sky Model (GSM) for the northern sky which

- has a proper flux scale
- has validated (initial) source parameters (spectrum, structure, ..)
- is astrometrically correct to better than 0.5"
- interfaces efficiently to calibration & imaging pipeline (through LSM)

Moreover, carrying out MS³ will

- create a *joint focus for activities*
- integrates scheduling, monitoring, processing, calibration & imaging
- test all KSP-pipelines
- provides a field-test for storage and processing resource needs
- provide the conditions for a rehearsal of full LOFAR operations

Early array configuration: 6 stations, late Jul09

MSSS configuration: 20 stations, Oct09

HA-range : uv-coverage vs projection

Ideally many snapshots at wide range of hour angles, say -4h to 4h

BUT

for Dec < +20° severe sensitivity penalty !

⇒ for low Dec probably aim
for snapshots within -2h,
+2h HA-range

LOFAR20 uv-coverages for LBA-band

snapshot (1 cut, 5m) + very broadband (30 MHz)

LOFAR20 uv-coverages for LBA-band

multiple cuts of 5m + very broadband (30 MHz)

How to do MS³ : an initial proposal

Observations:

- 20 NL stations (13+7) => multiple snapshots for decent uv-coverage
- limit to two (broad?) frequency ranges: 60 MHz & 150 MHz
- complete in < 3 months (30% efficiency) & 'real-time' processing</p>
- 4 beams of ~10 MHz (+ CasA beam, ~1 MHz)

Products:

- 1 million sources, of which ~ 100,000 will be high S/N (i.e. ~ 5 / \Box°)
- spectral indices for the ~ 100,000 sources seen in both bands
- structural information: ~20 60" PSF (~VLSS/WENSS/NVSS)
- fully tested pipelines
- arcsecond images of ~ 4,000 (?) European-LOFAR calibrator sources
- lists of polarized calibration sources for ionospheric RM-monitoring

MSSS - some basic numbers (Nijboer, March09)

	60 MHz	150 MHz
Bandwidth	8 MHz	8 MHz
Observing time per FoV	36 times 5 minutes	12 times 5 minutes
FoV	106 deg^2	19.4 deg^2
FWHM	11.6 deg	4.97 deg
PSF resolution (10 km)	82.5 arcsec	33.0 arcsec
Correlator time resolution	1 s	13
Correlator freq resolution	0.76 kHz	0.76 kHz
Uv data size	762 Gbyte	678 Gbyte
Post DP [^] 3 time res.	5 s	5 s
Post DP^3 freq res.	21.3 kHz	42.6 kHz
Post DP [^] 3 uv data size	~ 4.76 Gbyte	~ 2.12 Gbyte
# channels per image cube	Tbd	Tbd
# pixels per image plane	2048 x 2048 ?	2048 x 2048 ?
Total image size	Tbd	Tbd

Table 1: Specifications per pointing / FoV

2048 squared plane ~ 16.8 MByte

MSSS - some basic numbers (Nijboer, March09)

Frequency	Area	Rms	BW	Sources /	Int. time	#	Tot. obs.	Tot.
(MHz)	(sq. deg.)	(mJy)	(MHz)	FoV	(hrs)	pointings	(days)	sources
60	20262	5.37	8	6062	3	609.1	19.0	1.18e+6
150	20262	0.499	8	5768	1	3346	34.9	6.14e+6
 Tot At \$ 	Multiple al obs. 50% ef	freq. pla Time f.: 15.4	anes & 3 (100% weeks	0 σ: few eff.): 53 s or 3.4	times1e 3.9 day month	+5 /s or 7.7 /s	weeks	S
• Not	t taken Nyquist : • (or 2. Tapering	into ac samplin 25 in ol	count: g yields oserving	another f time)	actor 1.	5 in sens	itivity	

MSSS - some basic numbers (Nijboer, March09)

	60 MHz	150 MHz 3346	
Total # fields (2 pi steradian)	609		
Total observing time (100% eff., using 4 beams)	456.75 hr	836.5 hr	
Total # sources	Tbd	Tbd	
Total uv data size	466 Tbyte	2.27 Pbyte	
Total post DP^3 uv data size	~ 2.9 Tbyte	~ 7.1 Tbyte	
Total image data size	Tbd	Tbd	

Table 2: "All sky" specifications

1 freq. plane: 16.8 MByte x 3955 = 66.4 GByte

AST(RON

- Absolute flux scale
- Ionospheric issues
 - GPS MIDAS 4D?
 - *Refraction TEC relation*
- Polarization issues
 - WSRT polarized beam
 - Polarized source models
 - Polarization issues for EU baselines
- GSM issues
 - Initial GSM
 - GSM for EU baselines
- Determination of uv-taper for imaging
- Determination of station taper (HBA)
- RFI statistics
- Preparation for MSSS
 - Target field, pointing schemes, frequency span, sub-band selection, etc.
 - Data quality checks, dry runs, etc.

Beam Modeling Johan Hamaker, Sarod Yatawatta, Stefan Wijnholds, Michiel Brentjens, Ronald Nijboer

Ionosphere Jan Noordam, Ger de Bruyn, Bas van der Tol, Huib Intema, James Anderson, Anna Scaife, Joris van Zwieten, Mamta Panday, (Maaijke Mevius),..

Polarization Marijke Haverkorn, Ger de Bruyn, George Heald, James Anderson, Aris Noutsos, Anna Scaife, Enno Middelberg,..

<u>GSM/LSM</u> John Swinbank, Bart Scheers, Niruj Mohan, Sarod Yatawatta, Ger van Diepen, Michael Wise

Data Quality & Monitoring

V. N. Pandey, Jason Hessels, Evert Rol, Fabien Batejat, Jan Noordam, Michael Wise

Long Baselines John Conway, James Anderson, Jean-Mathias Grießmeier, Hans-Rainer Kloeckner, Philippe Zarka, Annette Haas, Jan Noordam, Ger de Bruyn

- Pulsar I: Nov. 17-21, 2008
- Pulsar II: Mar 2-6, 2009
- TBB I: Mar 30- Apr 3
- Pulsar III: Jun 2-6, 2009
- TBB II: June 22-26, 2009
- Polarization I: July 6-10
- Imaging I: late July 2009
- Ionosphere I: August 2009
- Imaging II: August 2009
- Transients I: late August 2009

- (HBA tracking)
- (Initial TAB tests)
- (Basic data-taking, LCU trigger)
- (BF data writer, TAB tests)
- (Basic data-taking, metadata)
- (TBD)
- (End-to-end pipeline tests)
- (TBD)
- (MSSS dry runs)
- (Transient detection pipeline)

*Registered trademark, Ben Stappers (2008)

LOFAR Users Forum

The End