An analysis of UKIDSS publications

Steve Warren Imperial College London

with help from Daniel Mortlock
How papers are selected

• Science results derived in whole or in part from UKIDSS data directly accessed from the archive (later divided by survey)
• Science results from primary follow-up observations in a programme that is identifiable as a UKIDSS programme (e.g. Spitzer obs of coolest brown dwarfs) (later divided by survey)
• Papers describing the survey (e.g. calibration, archive, data releases) (later classed general)
• Feasibility study of science that could be achieved using UKIDSS data (e.g. Deacon and Hambly) (later classed general)
Current status (end May 2012)

- Census date 28 May 2012
- Lawrence et al. 520 citations
- Total citations 7251
- Total papers 338
- h-index 41
- 1611 total authors
- 237 first authors
Comparison 2MASS, SDSS

summary May 2012

2MASS all
UKIDSS all
SDSS cons’m
Survey Olympic medals

Bronze
- Awarded for 10,000 citations
- Currently 7251
- Not there yet

Silver
- Main survey paper reaching 1,000 citations
- Currently 520
- York 3325/750 (SDSS), Skrutskie 2487/0 (2MASS)
- Should just get there

Gold (2MASS, SDSS)
- h-index of 100
- Currently 41
- Won’t get there
Survey comparisons

<table>
<thead>
<tr>
<th></th>
<th>planned</th>
<th></th>
<th>legacy</th>
<th></th>
<th>total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>papers</td>
<td>citations</td>
<td>papers</td>
<td>citations</td>
<td>papers</td>
<td>citations</td>
</tr>
<tr>
<td>general</td>
<td>9</td>
<td>1394</td>
<td>1</td>
<td>11</td>
<td>10</td>
<td>1405</td>
</tr>
<tr>
<td>UDS</td>
<td>23</td>
<td>709</td>
<td>37</td>
<td>935</td>
<td>60</td>
<td>1644</td>
</tr>
<tr>
<td>LAS</td>
<td>35</td>
<td>857</td>
<td>91</td>
<td>1174</td>
<td>126</td>
<td>2031</td>
</tr>
<tr>
<td>DXS</td>
<td>4</td>
<td>66</td>
<td>46</td>
<td>1165</td>
<td>50</td>
<td>1231</td>
</tr>
<tr>
<td>GCS</td>
<td>14</td>
<td>242</td>
<td>19</td>
<td>162</td>
<td>33</td>
<td>404</td>
</tr>
<tr>
<td>GPS</td>
<td>10</td>
<td>195</td>
<td>49</td>
<td>341</td>
<td>59</td>
<td>536</td>
</tr>
<tr>
<td>total</td>
<td>95</td>
<td>3463</td>
<td>243</td>
<td>3788</td>
<td>338</td>
<td>7251</td>
</tr>
</tbody>
</table>
Survey comparisons

- All surveys have been productive, LAS the most so
- UDS and DXS have high citations per paper
- Legacy science has produced >2x as many papers as planned UKIDSS science
- Planned science has higher citations per paper than legacy science
UKIDSS publications winners

- Most citations any paper: 520
 - Lawrence et al. 2005
- Most citations science paper: 206
 - Perez-Gonzales et al. 2008
- Most citations/yr science paper: 84
 - Mortlock et al. 2011
- Most UKIDSS citations individual: 1849
 - Seb Foucaud
- Most UKIDSS papers: 35
 - Jim Dunlop
- Most UKIDSS first-author papers: 14
 - Nicolas Lodieu
THE STELLAR MASS ASSEMBLY OF GALAXIES FROM z = 0 TO z = 4: ANALYSIS OF A SAMPLE SELECTED IN THE REST-FRAME NEAR-INFRARED WITH SPITZER

PABLO G. PÉREZ-GONZÁLEZ,1,2 GEORGE H. RIEKE,3 VÍCTOR VILLAR,1 GUILLERMO BARRO,1 MYRA BLAYLOCK,2 EUICHI EGAMI,3 JESÚS GALLEGOS,1 ARMANDO GIL DE PÉZ,1 SERGIO PASCUAL,1 JAIMÉ ZAMORANO,1 AND JENNIFER L. DUNLEY3

Received 2007 March 28; accepted 2007 September 10

ABSTRACT

Using a sample of ~28,000 sources selected at 3.6–4.5 μm with Spitzer observations of the Hubble Deep Field North, the Chandra Deep Field South, and the Lockman Hole (surveyed area ~664 arcmin²), we study the evolution of the stellar mass content of the universe at 0 < z < 4. We calculate stellar masses and photometric redshifts, based on ~2000 templates built with stellar population and dust emission models fitting the ultraviolet to mid-infrared spectral energy distributions of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0 < z < 1 (average star formation rate [SFR] 0.048 M⊙ yr⁻¹ Mpc⁻³), and at least another 40% at 1 < z < 4 (average SFR 0.074 M⊙ yr⁻¹ Mpc⁻³). Our results confirm and quantify the “downsizing” scenario of galaxy formation. The most massive galaxies (M > 10¹².⁰ M⊙) assembled the bulk of their stellar content rapidly (in 1–2 Gyr) beyond z ~ 3 in very intense star formation