Highlights from HiZELS The High Redshift (Z) Emission Line Survey

Philip Best, Ian Smail, Jim Geach, Michele Cirasuolo, Mark Swinbank, Yuichi Matsuda, Jaron Kurk, Rob Ivison, Mark Casali

Star formation Activity

- Combining all tracers doesn't really help...
- Dust dependence + selection biases + sensitivity + etc.

Stellar Mass Assembly

Stellar Mass function

Ilbert et al. 2010

 Stellar mass density evolution

• Marchesini et al. 2009

Combining both...

Hopkins 2004

Selection effects?
Completeness?
IMF? Missing Mass?

How can we improve our Understanding?

Improve SFH/ Part I A good (single) star-formation tracer that can be applied from z=0 up to $z\sim3$ (with current instrum.)

Well calibrated and sufficiently sensitive

Able to ~<u>uniformly</u> select large samples

- Different epochs
- Large areas

Jnderstand SFH/ Part

Best-studied fields

Ha (+NB)

- Sensitive, good selection
- Well-calibrated
- Traditionally for Local Universe
- Narrow-band technique
- Now with WFCAM: over large areas
 - And traced up to z ~ 3

HIZELS The High Redshift Emission Line Survey Pls: Best & Smail

 Deep & Panoramic extragalactic survey, narrow-band imaging (NB921, NBJ, NBH, NBK) over ~ 5 deg² (UKIDSS DXS fields)

(+Deep NBH + Subar-HiZELS + HAWK-I)

- Narrow-band Filters target Hα at z=0.4, 0.84, 1.47, 2.23
- Same reduction+analysis
- Other lines (simultaneously; Sobral+09a,b,Sobral+12a)
- UKIRT + VLT + Subaru

All sources K band

Including data taken 1-2 months ago

All sources K band => Line emitters NBK

Line emitters NBK

H-alpha sources: Double/triple NB + photo-zs + colours

H-alpha sources: Double/triple NB + photo-zs + colours

Clean, complete "slices" of 1000s of H-alpha selected galaxies in the last 11 Gyrs

The first Hα-[OII] large double-blind survey at high-z Sobral et al. 2012a, NAOJ press release

without any need for colour or photometric redshift selections

 $\underline{z=2.23} : H\alpha (NBK), [OIII] (NBH), [OII] (NBJ)$ $\underline{z=1.47} : H\alpha (NBH), H\beta (NBJ), [OII] (NB921)$ $\underline{z=0.84} : H\alpha (NBJ), [OIII] (NB921)$

HiZELS: Progress

~95% complete

Field	Exposu	re times	(ks/pix)	Time	required	
Name	NB_J	NB_{H}	$H_2(S1)$	NB_J	NB _H	$H_2(S1)$
UKIDSS UDS	20.0	20.0	20.0	Completed	Completed	Completed
COSMOS-1	20.0	20.0	20.0	Completed	Completed	Completed
COSMOS-2		14.0	20.0		Completed	Completed
ELAIS N1		14.0	20.0		Completed	Completed
Boötes		14.0	20.0		Completed	Completed
SA 22		14.0	20.0		Completed	14 hrs
Lockman Hole		14.0	20.0		4.5 hrs	27 hrs
COSMOS [DEEP]		114.0	65.0		Completed	Completed

Each field = 0.8 deg2 (4xWFCAM) Total area: <u>5.6 deg2</u> Depths: (NB921~26), NBJ~22.8, NBH~22.6, NBK~22.9 (AB) Line Flux limit ~0.5-1.0 x 10⁻¹⁶ erg s⁻¹cm⁻²

Sobral+12b, arXiv:1202.3436

Faint-end Slope α :

L*;"Break" of the LF

Typical SFR (SFR*) is changing significantly with time!

Up to z=2.2:

WFIR T Wide-Field Infrared Survey Telescope

HiZELS => Dark Energy missions forecast

Hirata et al. 2012

- Robust measurement of the Evolution of the Hα LF over 11 Gyrs and fully self-consistent (Hα) star-formation history z<2.3.
- 1742, 637,507, 630 Hα emitters at z=0.4,0.8,1.5,2.2; factor of ~10 times larger than previous samples
- Evolution in Ha LF:

$$\log L^*(z) = 0.45z + \log L^*_{z=0}$$

 $\alpha = -1.60 \pm 0.08$

• SF History of the Universe :

$$\log
ho_{
m SFR} = -0.14T - 0.23$$

 $\log
ho_{
m SFR} = -2.1/(z+1)$

 Agreement with stellar mass density growth suggests that the Ha analysis is tracing the bulk of star formation since z~2.2

Using the clean, SF selected samples to understand galaxy evolution

The role of the Environment

 A very wide range of environments - from the fields to a supercluster (Sobral et al. 2011)
 X-rays

• UKIDSS UDS z=0.84

COSMOS z=0.84

The role of the Environment

 Use high quality photo-zs to estimate distance to 10th nearest neighbour >> use spect-z to estimate completeness and contamination >> compute corrected local densities

"Calibrate" environments in a reliable way using the accurate clustering analysis and real-space correlation lengths of field, groups and clusters

Haluminosity function

Sobral et al. 2011a

Environment sets the faint-end slope of the Hα LF:

-<u>steep</u> α~-2 for the lowest densities

<u>shallow</u> α~-1 for
 highest densities

Mass and Environment

z~1

z~0

log (1+delta) Overdensity

SDSS (Peng+10)

Mass trend at least up to z~1.5

Sobral et al. 2011

The fraction of (non-merging) star-forming galaxies declines with <u>both</u> mass and environment

Local Projected Density

Local Projected Density

Environment at z~1

Sobral et al. (2011)

Results reconcile previous apparent contradictions

Extinction-Mass z~0-1.5

Stellar Mass correlates with dust extinction like in the local Universe - (agrees with Garn & Best 2010)

Simpler way to predict dust extinction with observables: optical/UV colours - empirical relations valid at z~0-1.5 (Sobral et al. 2012a)

Sobral et al. (2012a)

Does the empirical SFRdust extinction dependence hold at z~1.5?

No! Offset of ~0.5 mag

Local relations (extinction corrections as a function of observed luminosity) over-predict dust-corrections at high redshift

Does the empirical SFRdust extinction dependence hold at z~1.5? and if we take into account the luminosity evolution? [log[L*(z)] ∝ 0.5z

Does the empirical SFR-dust extinction dependence hold at z~1.5? yes, if we account for the luminosity/L*(z) evolution

~Same population(!?), just overall more luminous

So (apart from the L* evolution) ~no evolution(?) in dust extinction of star forming galaxies $log[L^*(z)] \propto 0.5z$

Does the empirical SFR-dust extinction dependence hold at z~1.5? yes, if we account for the luminosity/L*(z) evolution

"Fixed luminosity"?
log[L*(z)] ∝ 0.5z

So "fixed" ULIRG/LIRG class/ make no sense; but ULIRG(z) / LIRG(z) classifications might

(at z~2, ULIRGs >10¹³L_o LIRGs >10¹²L_o)

Clustering

Sobral et al. 2010

Clustering of H α at z~l

Clustering depends on H luminosity; galaxies with higher SFRs are more clustered

Clustering of Ha emitters

Clustering depends on Ha luminosity; galaxies with higher SFRs are more clustered

Scaling Hα Iuminosities by the break of the Hα Iuminosity function recovers a **single relation**, independent of time across the bulk of the age of the Universe

Clustering-Ha

Sobral et al. 2010

Using the Luminosity evolution (L*) measured before...

A simple view: 11 Gyrs of SFGs with HiZELS

- Strong Evolution: Typical SFR (SFR*) reduces by 1/10
- Many statistical properties remain "unchanged": Dust "extinction", Mass function (M*,alpha)
- Environmental + Mass trends are the same (last ~9 Gyrs)
- Same Dark Matter halo masses host the same L/L* galaxies

Summary:

- Evolution of the Hα LF over 11 Gyrs and fully self-consistent (Hα) star-formation history z<2.3.</p>
- Hα emitters at z=0.4-2.2; factor of ~10 times larger than previous samples
- Evolution in Ha LF: $\log L^*(z) = 0.45z + \log L^*_{z=0}$ $\alpha = -1.60 \pm 0.08$
- SFH of the Universe : $\log \rho_{\rm SFR} = -2.1/(z+1)$ $\log \rho_{\rm SFR} = -0.14T 0.23$
- Agreement with stellar mass density growth
- Dust extinction in SF galaxies 9 Gyrs ago ~similar to SDSS
- z~0 mass and environment dependences already there up to z~1.5
- Single L*(z)-DM halo connection up to z~2.2 and L* scaling: important insight?

Fraction of AGN within the sample

Sobral et al. 2012c

Dynamics & Metallicity gradients H-alpha z=0.8, 1.47, 2.23

Swinbank et al. 2012

Galaxy Dynamics at z~0.8-2.2

Swinbank al. 2012

From AO IFU observations

Metallicity gradients H-alpha z=0.8, 1.47, 2.23

Don't believe [OII]/Ha?

Let's look at the MIR/FIR w/ Herschel Ibar, Sobral, Ivison et al. 2012

Ha emitters are "typical" SF galaxies at their epoch luminosities of z=0 LIRGs

Ha AGNs: hotter & more luminous in FIR

Dust corrections as a function of observed H-alpha would get it completely wrong!

Dust Corrections as a function of Mass work the best

Ibar, Sobral, Ivison et al. 2012

FI5F denived A⁰ Flar = 0.9-1.2 mag 0.0 0.5 Same as [OII]/Fla

Ha luminosity function z>1?

Samples still too small: <50 sources

L* Evolution: but by how much?

z~2 Faint-end slope? Hayes et al: α=-1.7 Tadaki et al: α=-1.3

Is α getting steeper with z? Hα LF z~2; Tadaki et al. 2011

Ha luminosity function z~1?

Samples now ~ large enough but:

- Each study focus on a ~single redshift and uses:
- Different Selection criteria
- Different apertures
- Different areas + depths

So they can disagree even at the same redshift

Evolution vs methods?

e.g. z~0.8 Ly et al. 2011

Sobral et al. 2012c

arXiv:1202.3436

NB filter	λ _c (μm)	FWHM (Å)	z H α	Volume (H α) (10 ⁴ Mpc ³ deg ⁻²)
NB921	0.9196	132	0.401±0.010	5.13
NBJ	1.211	150	0.845±0.015	14.65
NBH	1.617	211	1.466 ± 0.016	33.96
NBK	2.121	210	2.231±0.016	38.31
HAWK-IH2	2.125	300	2.237 ± 0.023	54.70

~16 kpc apertures z=0.4-2.23

Redshift	Limit SFR	Volumes (UDS + COSMOS)
0.401±0.010	<mark>0.01</mark>	~1x10 ⁵ Mpc ³
0.845±0.015	1.5	~2x10 ⁵ Mpc ³
1.466±0.016	<mark>3.0</mark>	~8x10 ⁵ Mpc ³
2.231±0.016	<mark>3.5</mark>	~7x10 ⁵ Mpc ³

z=0.4-2.23

 $\Sigma > 3$, EW_(Ha+[NII]) > 25 Å

Klypin, Trujillo-Gomez, & Primack 2011

So is it just "nature"/mass? Or is the environment important as well?

Local Universe: star formation activity declines with increasing environmental density

How important is the local environment? Does the role change with redshift?

The Ha + [OII] view

Detailed evolution of the Hα LF: strong L^{*} evolution to z~2.3

First self-consistent measurement of evolution up to z~2.3

Strong evolution can also be seen using fully consistent measurements of the [OII] luminosity function up to z~1.8 z=6.6: Subaru: NB921 wide survey (<u>already awarded</u> <u>time as PI</u> + proposed to cover total of ~5 sq. deg.)

Strategy:

z=7.1: VISTA (LASER) - deep + "Ultra-wide" (10 sq. deg) Co-I

z=8.8: VISTA "Ultra-wide" ~10 sq proposed as PI + ELVIS UltraVISTA

