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UKIDSS science case (2001)

All quasars 5.8<z<7.2, Y<19.0 are selected by the criteria shown in Fig2.3. Beyond z=7.2
quasars redden rapidly in Y J. The Y magnitude limit is set by the i’ Y>3 colour selection
limit, and by the i’=22 limit of the Sloan survey i.e.l we are picking the very brightest quasars |

in this redshift range, which are of course the most valuable for absorption-line spectroscopy.
We can compute the expected numbers using the latest luminosity function of Fan et al.
(2001a), as well as the older luminosity function of Schneider, Schmidt & Gunn (1995).
based on lower-redshift data. The results are provided in Table 2.7. By surveying 4000 O°
|We can expect to find 10 quasars at 5.8<z<7.2.| These numbers can easily be increased
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Some scepticism needs to be maintained about the importance of some spe-
cific goals. The one that immediately comes to mind is detecting a few z=7
quasars in the LAS. The yield of 2 > 5.8 quasars is remarkably small for the
investment of resources, especially the added Y band imaging. The Y band
imaging, which requires 20% of the LAS time (52 nights), appears to be mostly
for the purpose of finding about a dozen quasars at z > 5.8. In the short time
since the UKIDSS document was circulated the record for the highest redshift
has risen from 5.8 to 6.3.[ It seems certain that by the time the UKIDSS begins |

| the z=T7 barrier will be cracked|and we will already know some of the answers
“to questions posed by the Consortium.
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Quasar selection
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Results

UKIDSS DR8 complete:
2270 sq. deg.

ULAS J 131940950

Discovered 8 new
redshift ~6 quasars

Recovered 6 SDSS
redshift ~6 quasars

Second largest sample

of bright z ~ 6 quasars
(after SDSS)




Quasar demographics
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Selection function
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Preliminary: too noisy; too sensitive at z ~ 7.3



Luminosity function



A redshift 7.085 quasar

ULAS |1 120+064 1 Seen |00 Myr earlier
than any other

non-transient source
of similar luminosity

Just ~100 brighter and
more distant sources
on whole sky

Only one z >6.5 quasar,
but close to high-z
limit of search
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COSMOLOGY
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Optical/NIR spectrum
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Unabsorbed spectrum very similar to low-z quasars

Data from FORS2@VLT and GNIRS@Gemini

Implied black hole mass of 2x1029 M_Sun at 770 Myr



Super-massive black hole
A 2 x10° M black hole just 800 Myr after the Big Bang
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fractional transmission, T

Ly alpha |GM absorption
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Ly a absorption redshift, z_, ¢ Ly

Complete Gunn-Peterson (1965) trough from z ~ 5.85

Optical depth too high to probe easily through Ly alpha



Quasar near zones

(image: Gemini/AURA by Lynette Cook)
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Quasar near zone ~10 times smaller than at z = 6.4

Extent due to ionization front or recombination?
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What next!

VLT X-Shooter spectroscopy (30 hours):
Ly alpha profile and dark gaps

HAWK-I narrow-band imaging (30 hours)
to look for recombination Ly alpha

Finish UKIDSS 5.8 < z < 7.2 quasar search:
one more bright z > 6.5 quasar?

Extend to 8 < z < 9 using both UKIDSS and
VISTA data



