UKIDSS UDS: The emergence of the red sequence

Will Hartley, University of Nottingham

Science Team:

Nottingham

Omar Almaini (survey head) Sebastien Foucaud (now NTNU) **WH (survey scientist)** Chris Conselice Ruth Grutzbauch (now Lisbon) Rob Chuter Emma Bradshaw Caterina Lani Alice Mortlock Ismael Botti

Edinburgh

Jim Dunlop Ross McLure Michele Cirasuolo Henry Pearce

<u>LJMU</u>

Chris Simpson

With special thanks to the JAC staff!

A fundamental issue:

Skibba & Sheth (2009)

Current model:

Gas-rich, major merger

Quasar / intense star-burst phase

Dead spheroid

Current model:

Credit: MPA-Garching

Hierarchical assembly

redshift

Free-fall time limit on SF + SF feedback

Cooling time limits SFR + hot halo formed

M_{halo} large (~10¹²⁻¹³ M_{sun}) t_{cool} ~ t_H

Low mass halo

UKIDSS UDS:

 $J = 24.9 (5-\sigma, AB)$

H = 24.2

K = 24.6

Double the previous exposure

time, and the data are public!

Currently the deepest degree-

scale survey by at least half a

<u>DR8</u>

Depths are 5- σ rms between 2" apertures.

Next release: Imminent

magnitude.

0.88 deg.

Photometric redshifts

Red: UDSz VIMOS Blue: UDSz FORS2

$\Delta z / (1 + z) = 0.028$

Cross-correlation:

DR8

9.2 < logM_{*} < 9.6

10¹³ M_{sun}

bias

redshift

9.6 < logM∗ < 10.0

10¹⁴ M_{sun}

10¹³ M_{sun}

10.0 < logM∗ < 10.4

10¹⁴ M_{sun}

 10^{13} M_{sun}

10.4 < logM∗ < 10.8

10¹⁴ M_{sun}

10¹³ M_{sun}

10.8 < logM*

10¹⁴ M_{sun}

 $10^{13} \mathrm{M}_{\mathrm{sun}}$

0.7 < z < 3.0

Halo mass

Stellar mass

0.7 < z < 1.5

Halo mass

1.5 < z < 3.0

Stellar mass

Summary

The UKIDSS UDS is currently the best near-IR survey for studies of large-scale structure at z > 1 (amongst other science goals).

We have used the cross-correlation technique to probe the masses of DM halos hosting passive galaxies to $z \sim 3$.

Results are **consistent** with a simple model in which halo mass has an important role is quenching star-formation.

Thanks for listening!