How galactic-scale gas motions regulate the structure of molecular gas and star formation

Sharon E. Meidt (MPIA)

PdBI Arcsecond Whirlpool Survey

(sub-)kpc star formation relation Bigiel et al. (2008;2011)

Σ_{SFR} =Σ_{H2}ⁿ n=1 ≠1.4-1.5

universal molecular gas depletion time ??

Krumholz, Dekel & McKee (2011)

gas kinematics in spiral potentials

stellar feedback

GMC formation + evolution

gas kinematics in spiral potentials global stability, shear, shocks

GMC formation + evolution

stellar feedback

gas kinematics in spiral potentials global stability, shear, shocks

non-circular motions: dynamical coupling of clouds to environment

stellar feedback

PdBI Arcsecond Whirlpool Survey CO(1–0) in central 9kpc at GMC resolution (40pc, 10⁵M_{sun}) Eva Schinnerer (Pl)MPIAAnnie HughesMPIADario ColomboMPIASharon MeidtMPIAAdam LeroyNRAOJerome PetyIRAM

<u>IRAM</u> 30m: 40 hr PdBI: 170 hr

Gaelle Dumas Karl Schuster Clare Dobbs Todd Thompson Santiago Garcia–Burillo Carsten Kramer

IRAM IRAM U. Exeter OSU OAN IRAM

single dish (~ 500 pc)

Schuster et al. (2007)

PAWS (PI:Schinnerer)

<u>IRAM</u> 30m: 40 hr PdBI: 170 hr CO(1-0) in central 9kpc at GMC resolution (40pc, 10⁵M_{sun})

> see also Koda et al. (2011) ~100pc resolution

500 po

Colombo et al. (in 7 Velocity field prep.) bar twist ~50 km s⁻¹ non-circular streaming motions! 500 pc

Velocity field

ar twist

~50 km s non-circ streamin motions

500 pc

ľ

Colombo et al. (in 7 Velocity field prep.) bar twist ~50 km s⁻¹ non-circular streaming motions! 500 pc

PAWS (PI:Schinnerer)

<u>IRAM</u> 30m: 40 hr PdBI: 170 hr CO(1-0) in central 9kpc at GMC resolution (40pc, 10⁵M_{sun})

Spatial Relation b/n Gas and Star Formation Schinnerer et al. (in prep.)

Spatial Relation b/n Gas and Star Formation Schinnerer et al. (in prep.)

Spatial Relation b/n Gas and Star Formation Schinnerer et al. (in prep.)

GMC Stabilization in M51 what shuts off star formation?

support not entirely from

 spiral arm shear (Oort A; cf. Dib & Helou 2012)

- preferentially enhanced turbulent motions (regular σ along spiral)
- stellar feedback (little Hα, UV, clusters <70Myr)

Meidt et al. (2013)

Pressure Stabilization

Pressure Stabilization prop. to log (Pressure) (P~GΣ²)

ambient P comparable to internal cloud P

cloud surface pressure important

Pressure Stabilization prop. to log (Pressure) (P~GΣ²)

ambient P comparable to internal cloud P

cloud surface pressure important

what happens if we perturb the cloud surface in the presence of (relative) motion?

pressure

Meidt et al. (2013) cf. Jog (2013, in prep.)

pressure

Meidt et al. (2013) cf. Jog (2013, in prep.)

clouds in motion in arm:

1). reduced surface pressure (Bernoulli)

2). increased (Bonnor-Ebert) stable mass

2b). reduced collapse-unstable fraction

3). lower SFE

pressure

Meidt et al. (2013) cf. Jog (2013, in prep.)

clouds in motion in arm:

1). reduced surface pressure (Bernoulli)

2). increased (Bonnor-Ebert) stable mass

2b). reduced collapse-unstable fraction

3). lower SFE

log M_{lum} [M_{sun}]

pressure

Meidt et al. (2013) cf. Jog (2013, in prep.)

clouds in motion in arm:

1). reduced surface pressure (Bernoulli)

2). increased (Bonnor-Ebert) stable mass

2b). reduced collapse-unstable fraction

3). lower SFE

ln T_{dep} \approx -(Y+1) $\frac{V_{stream}^{2}}{4\sigma^{2}}$

for $dN/dM \propto M^{\gamma}$

log M_{lum} [M_{sun}]

non-circular gas motions: Present-day Torques

M_{sol} pc⁻²

Meidt et al. (2012a,b) Eskew, Zaritsky & Meidt (2012)

non-circular gas motions: Present-day Torques

M_{sol} pc⁻²

S⁴G stellar mass surface density

DETAILED ANATOMY OF GALAXIES

Meidt et al. (2012a,b) Eskew, Zaritsky & Meidt (2012)

Present-day Torques

PAWS CO +

inertial torques R×∇Φ

outflow inflow

╋

Radius = proxy for environment (bar, spiral)

Present-day Torques

Spiral arm Torques

from PAWS kinematics inflow=large |V_{stream}|

Spiral arm Torques

from PAWS kinematics inflow=large |V_{stream}|

Spiral arm Torques

Vstream² In T_{dep}≉-(γ+1

for $dN/dM \propto M^{\gamma}$

Radius (arcsec)

fit predicts slope of mass spectrum γ intersection w/ y-axis: Tdep,0

for dN/dM \propto M^{γ}

for $dN/dM \propto M^{\gamma}$

for $dN/dM \propto M^{\gamma}$

for dN/dM \propto M^{γ}

intersection w/ y-axis: Tdep,0

<γ>=-1.7±0.25 <Tdep0>~1Gyr

<**T**_{dep}>=2.5Gyr

~ 'universal' depletion time (Bigiel et al. 2008)

are the 'normal' spiral galaxies really normal?

dynamical pressure in the presence of streaming motions driven by torques

streaming lengthens **T**_{dep} to 2 Gyr

comparable to dwarfs with Galactic X_{CO}, starbursts?

are the 'normal' spiral galaxies really normal?

Trends with Morph. type $V_{stream} \sim m (\Omega - \Omega_p) R \tan i_p \Sigma / \Sigma_0$ $\sim m V_c \tan i_p \Sigma / \Sigma_0$ $\sim V_c / m \Sigma / \Sigma_0$ away from CR

i_p =pitch angle *V_c* =rot. velocity *m*-armed symmetry

 \rightarrow early type spirals have longer globally-averaged τ_{dep}

Trends with Morph. type $v_{stream} \sim m (\Omega - \Omega_p) R \tan i_p \Sigma / \Sigma_0$ $\sim m V_c \tan i_p \Sigma / \Sigma_0$ $\sim V_c / m \Sigma / \Sigma_0$ away from CR

 \rightarrow early type spirals have longer globally-averaged τ_{dep}

 i_p =pitch angle

 V_c =rot. velocity

m-armed symmetry

COLD GASS: Saintonge et al. (2013)

implications, locally and at high-z

- early-type spirals have longest depletion times
- **dwarfs, starbursts** (little spiral-driven streaming): *short* depletion times
- why 2 Gyr? because spirals typically drive streaming v_S=10-15 km s⁻¹

Meidt et al. (2013)

implications, locally and at high-z

- early-type spirals have longest depletion times
- **dwarfs, starbursts** (little spiral-driven streaming): *short* depletion times
- why 2 Gyr? because spirals typically drive streaming v_s=10-15 km s⁻¹
- at high-z high gas fraction: short depletion time

 au_{dep} linked to gas fraction (high F_g --> weakened sensitivity to environmentdecoupling)

Take Away

 non-circular streaming motions *suppress* star formation and *lengthen* depletion time
star-forming disk galaxies have τ_{dep}=2 Gyr (in contrast to nominal 1 Gyr in systems without non-axisymmetric structures)