MG Millennium simulations: a new precision era in modified gravity research

Presented by Wojtek (Voyteck) Hellwing ICG, University of Portsmouth

formerly@

University

DEX XIII, Edinbra, January orbit #2017

Gravity

Gravity

Global acceleration – possible scenarios

Now, is it worth a major campaign?

Gravity

XXI century precison cosmology: one of the goals is test GR on (intermediate) cosmological scales

DARK ENERGY SURVEY

euclid

How to test different scenarios?

- Modified Gravity (MG) simulations are much more expensive than vanila GR
- Hence, most of the currently avaiable MG simulations have relatively low-resolution
- Usually low-resolution some big boxes are avaiable (i.e. 1024^3 with L~1Gpc/h)
- Or medium resolution small boxes (512³ with L~250Mpc/h)

Gravi

- Effects on the properties of large-scale structures are fairly reckognized and assessed (lensing, RSD, clustering, etc.)
- Effects on halo and galaxy formations much less studied and determined

- With low resolution only simpler galaxy modelling methods are avaiable:
- Abundance matching, HOD, etc.
- These are rather agnostic about the fine details of galaxy formation baryonic physics

LOWZ DR10

 HOD parameters choosen to achieve target number density of the galaxy sample n=4e-4 gals/Mpc^3

 But... modifed growth history and the non-negligible 5th force on the intergalatic scales may have profound consedunces on halo and hence galaxy formation

Figure 3. The CMFs for all haloes containing 20 and more particles calculated at redshifts z = 6, 3 and 0. Mass functions for redshifts z = 6 (z = 3) were scaled down by 10^{-2} (10^{-1}) for clarity.

Courtesy of Sownak Bose

 But... modifed growth history and the non-negligible 5th force on the intergalatic scales may have profound consedunces on halo and hence galaxy formation

 But... modifed growth history and the non-negligible 5th force on the intergalatic scales may have profound consegunces on halo and hence galaxy formation

Courtesy of Sownak Bose

MG will affect many aspects of galaxy/halo formation:

- Density profiles
- Satellite structure and kinematics
- Required effectivess of baryonic might be different:

Reionisation, star-formation, SN and AGN feedbacks, etc.

Hellwing et al. 2013 Courtesy of Sownak Bose

- A need for a new highresolution run with at least Millennium simulation resolution
- Now it is possible thanks to Alex, Baojiu and Sownak addition to ECOSMOG/AMR-MG algorithm that speeds-up the calculations for the nDGP model by one order of magnitude
- MG-Millennium run is now feasible!

MG-Millennium in a nut-shell: Model: nDGP with r cH~1 (effective linear growth rate ehanced by ~10%), Vainshtein screening (no env dep.) Cosmology: PLANCK2015 Resolution: BOX 676.7 Mpc/h Np=2400/3, mp-1.8x10/9 Ms/h Snapshots: ~160, 2 runs: LCDM and MG We got 6+(2 each year) mln of CPU hours allocated on the "Ωκεανός" (supercomputer at ICM@Warsaw) **OKEANOS** in the 26016 cores

5.333 Gb of RAM per core

YOU can use the computer as well: hellwing@port.ac.uk