Evolution of the z ~ 6 - 7 Lyman-alpha Luminosity Function

Sérgio Santos David Sobral, Jorryt Matthee

DEX XIII Edinburgh 9 January 2017

Take home messages

Largest Lyman-alpha narrow band surveys at z ~ 6 - 7.

Drop in the Ly α LF happens for the faint sources. Little evolution on the bright end.

Hints for differential reionization.

Motivation

Neutral IGM Ionised IGM

Recombination

Motivation

Neutral IGM Ionised IGM

Epoch of Reionization Transition period

Motivation

Neutral IGM Ionised IGM

Epoch of reionization What are the main drivers? How/when did it happen?

Lyman-alpha as a probe of high-z Universe

Lya (1216 Å) emitted by star-forming galaxies + AGN

Observable from ground-based telescopes at z > 2

Intrinsically the brightest line

Lyman-alpha as a probe of high-z Universe Lya (1216 Å) emitted by <u>star-forming galaxies</u> + <u>AGN</u>

Observable from ground-based telescopes at z > 2

Intrinsically the brightest line

Resonant line - Highly affected by the IGM

"Problem" but also opportunity!

Easily scattered by neutral IGM -> Tracer of reionization

Narrow band Technique

Imaging with broad + narrow filters Strong narrow band detection likely means an emission line at that wavelength

Two parameters Σ and EW that quantify how significant the excess is.

e.g. Sobral+2009, Ouchi+2008, Ouchi+2010, Malhotra&Hu2004, Murayama+2007

Lyman Break to remove interlopers

We remove low redshift emitters by the position of the Lyman break.

z > 5 Lyα must have no observed optical detection.

Lyman-alpha luminosity function

Lyman-alpha luminosity function

Wide area narrow bad survey at z ~ 5.7 Area ~ 7 deg² Volume ~ 6 x 10⁶ Mpc³ Role of cosmic variance across 3 fields

Construct the LF right after the end of reionization

Previous results: Murayama+2007, Ouchi+2008, Hu+2010 (max ~ 1.65 deg²)

Santos, Sobral & Matthee 2016

R.A. (J2000)

Selection criteria for z = 5.7

Σ and Equivalent Width cuts

All line-emitters before interloper removal

z=5.7 Luminosity Function

z=5.7 Luminosity Function

z = 5.7 Luminosity Function

Wide area narrow band survey at z ~ 6.6

Area ~ 5 deg² Same EW cuts Same sigma cuts Same apertures Similar area/volume

Same selection!

Construct the LF within reionization

Previous results Ouchi+2010 (~ 1 deg²)

Evolution of the Luminosity function

Luminosity function evolution

Matthee, Sobral, Santos et al. 2015

Artist impression, NASA

Observations

Santos, Sobral & Matthee 2016

Toy model

Matthee, Sobral, Santos et al. 2015

Observations

If the drop is caused by reionization, we would expect large Lya sizes for the faint sources at z=6.6

Observations

If the drop is caused by reionization, we would expect large Lya sizes for the faint sources at z=6.6

Santos, Sobral & Matthee 2016

We can test this!

Lya sizes and evolution at z = 5.7 - 6.6

Median results consistent with Momose+2014

Lya sizes and evolution at z = 5.7 - 6.6

Lya in a more neutral medium scatters J Extended emission

Lya sizes and evolution at z = 5.7 - 6.6

Lyα in a more neutral medium scatters ↓ Extended emission

Hints for <u>differential</u> reionization

Follow-up of sources z = 6.6Two brightest Lyman-alpha emitters at z=6.6 z = 6.6

Sobral et al. (inc. Santos) 2015

Spectra from DEIMOS, KECK

Spectra from

X-SHOOTER

ESO TOP 10 Astronomical Discoveries

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

1620

Normalised Flux

First galaxy with evidence of a very hard ionising source $(T_{eff} > 10^5 \text{ K})$ and extremely low metalicity ($Z < 10^{-2.5}$)

PIII-like or DC

CR7 Observed $HeII/CIII] \sim 0.5$ HeII/CIII] ~ 1 HeII/CIII] ~ 2

913

1915

J Lva H

PopIII wave?

CR7

Restframe Wavelength (A)

Restframe Wavelength (Å)

Conclusions

- We constructed the largest NB surveys at z ~ 6 7
- Cosmic variance influences results (variations up to 0.4 dex)
- Steep faint end of the Ly α LF
- Differential evolution of the bright and faint ends
- Faint Ly α haloes more extended at z ~ 6.6

Hints for - differential reionization

Thank you for your attention