EAGLE simulation limitations

 $\bullet \bullet \bullet$

Matthieu Schaller

ICC, Durham University, UK DEX XIII -- Edinburgh -- 09 January 2017

EAGLE 101

- 100^3 Mpc^3 simulation with $2 \times 10^6 \text{ M}_{\odot}$ gas mass resolution.
- Resolving the warm ISM phase with the hydrodynamics solver.
- Sub-grid model for galaxy formation calibrated to match:
 - The z=0 stellar mass function.
 - The z=0 galaxy mass-size relation.
- Led to more than 80 publications thus far.

EAGLE 101

So far, so good...

An obvious size issue...

Clearly far from even the smallest modern cosmological surveys...

... seen also in the clustering

6

Also a problem of statistics for galaxy studies

If you split the galaxy population by 3 criteria, you typically end up with ~10 galaxies per bin.

- \rightarrow Hard to explore scatter.
- \rightarrow Hard to explore rare objects.

Gas fractions in clusters

- More serious issue.
- Gas fraction in groups is too high, entropy profile is also wrong.
 - → A worry for cluster cosmology projects using X-ray selection for instance.

Solutions ?

- No obvious way to fix this by tweaking the AGN parameters.
- Might be a fundamental issue with:
 - \circ The hydro scheme (conduction, equation of state of the gas, ...)
 - A problem of resolution of the gas around the super-massive black hole.
 - Missing physics (cosmic rays, magnetic fields, jets, ...)

• Problem is hard to solve as simulations of clusters are really expensive to perform. Especially if the resolution needs to be increased.

Let's get technical!

Cold gas problems

- H I mass function is fine(-ish) at masses above ~10⁹ M_☉.
- At lower masses, lack of sources and weird peak/feature.
- In the simulation this peak is due to "dark" haloes that have not formed a single star.

Visually discs are too thick

Disc thickness explained

- Finite resolution limit of EAGLE.
- 2×10⁶ M_☉ is the mass that can be (barely) resolved.
- This defines a region in the densitytemperature that can't be tracked by the gravity-hydro solver.

Disc thickness explained

• To avoid issues, EAGLE (and many other simulations) prevent the gas to go in the "forbidden region" by imposing a different equation of state.

Typically, we use P $\propto \varrho^{4/3}$.

• Creates an artificial pressure that prevents the collapse of structure below a certain scale ~ 1kpc.

Consequences

- Gas disc is too thick.
- Stars are born too far away from the plane of the disc .
 → Stellar disc is also too thick.
- Structure of the ISM is entirely artificial.
 (Although one could argue for additional forces to give it the structure we have in the run.)

Solutions ?

- Need to increase the resolution.
- Need to implement more physics, especially cooling channels and processes to really get a cold phase in the ISM.
 - Much more expensive simulations.
 - Likely need a re-calibration of other parameters.
 - Potentially need to de-couple the hydrodynamics temperature and the sub-grid temperature.

Work for the future

- Run larger volumes \rightarrow EAGLE-XL
- Re-think the AGN model and explore options
 → Some work in the C-EAGLE project
- Improve the cold phase and run higher resolution simulations \rightarrow EAGLE-2