What Does the Bullet Cluster Tell us about Self-Interacting Dark Matter?

Andrew Robertson Supervisors: Richard Massey and Vincent Eke

9th January 2017, DEX XIII, Edinburgh

What Does the Bullet Cluster Tell us about self Interacting Dark Matter?

Why the Bullet Cluster tells us less about Self-Interacting Dark Matter than we might have hoped...

> Andrew Robertson Supervisors: Richard Massey and Vincent Eke

> > 9th January 2017, DEX XIII, Edinburgh

WHY STUDY SELF-INTERACTING DARK MATTER?

- SIDM: Cold Dark Matter with non-gravitational interactions (here elastic scattering)
- Originally proposed to solve missing satellites problem
- But implications for 'Too Big to Fail'

"The Chosen Few" – Sawala+ 2014

Garrison-Kimmel+ 2014

WHY STUDY SELF-INTERACTING DARK MATTER?

- SIDM: Cold Dark Matter with non-gravitational interactions (here elastic scattering)
- Originally proposed to solve missing satellites problem
- But implications for 'Too Big to Fail'

"The Chosen Few" – Sawala+ 2014

Elbert+ 2016

WHY STUDY SELF-INTERACTING DARK MATTER?

- SIDM: Cold Dark Matter with non-gravitational interactions (here elastic scattering)
- Originally proposed to solve missing satellites problem
- But implications for 'Too Big to Fail'

WHY LOOK AT MERGING GALAXY CLUSTERS?

Higher DM-DM velocities than in isolated galaxy clusters

Kaplinghat+ 2016

If DM has a velocity dependent crosssection, then information on DM scattering at different velocities provides complementary information

Particle Collider for Dark Matter!

Dark Matter separated from main baryonic component

SMASHING CLUSTERS TOGETHER

INCLUDING SIDM WITH A LARGE CROSS-SECTION

DM-GALAXY OFFSETS

MEASURING HALO POSITIONS

Parametric Model Fitting

(what I did)

Y/kpc

core/kpc

r_{cut}/kpc

-0

500 y/kpc -500رور (00/ 00/ 00/ -1000 -500500 1000 0 x/kpc 0.0 0.1 0.3 0.20. к 6.630 0.09 0,10 30 104 250 0.04000 0.04 0,00,00 00 Ś 600 ÷ 8 130 Pas $\log_{10}[\rho_0/M_{\odot}\,\mathrm{kpc}^{-3}]$ Y/kpc $r_{\rm core}/{\rm kpc}$ r_{cut}/kpc X/kpc

Shrinking Circles (what Randall did)

MEASURING HALO POSITIONS SHRINKING CIRCLES

VELOCITY DEPENDENT SIDM

Can have large cross-sections in dwarf galaxies while evading constraints from galaxy clusters

A natural outcome of some SIDM candidate models (e.g. mirror DM or atomic DM)

CORE GROWTH IN ISOLATED HALOES

DM-GALAXY OFFSETS WITH REALISTIC (YUKAWA) PARTICLE SCATTERING

VELOCITY DEPENDENCE REDUCES OFFSETS

Particles moving 'backwards' with respect to their halo's direction of motion have a lower relative velocity with respect to the main halo – more likely to scatter

THANKS FOR LISTENING

SUMMARY

- Colliding galaxy clusters are an interesting place to look for non-gravitational DM interactions
- Current constraints on SIDM cross-section from offsets in merging clusters have been over-stated
- For the simplest well-motivated velocity-dependent SIDM, expect only small offsets in merging galaxy clusters

THANKS FOR LISTENING

THE DISTRIBUTION OF SCATTERED PARTICLES

0.01

0.001

-1.0

-0.5

0.0

 $\cos\theta$

0.5

1.0

from the relevant probability distribution (which can change with collision velocity)

YUKAWA SCATTERING WITH THE BORN-APPROXIMATION

YUKAWA CROSS-SECTIONS FOR BULLET CLUSTER SIMULATIONS

Four different cross-sections, with different 'turn-over' velocities

Matched to have same $\sigma_{\check{T}}$ at 3900 km/s

THE EFFECTS OF VELOCITY DEPENDENCE

The motion of particles within their halos has a component transverse to the collision axis, which increases the average pairwise velocity of particles above the collision velocity of the two haloes

 $\frac{\sigma(v)}{m} = \left(\frac{v}{4350\,\mathrm{km\,s^{-1}}}\right)^{-\alpha} \mathrm{cm}^2 \mathrm{g}^{-1}$