FLEXION IN COSMOS

Measuring Higber Order Lensing Distortions

Malin Velander, Konrad Kuijken & Tim Schrabback

WHY FLEXION?

- Flexion is the *gradient* of shear
- Describes local distortions when the shear is not constant across a source image
- Adds more detail to mass reconstruction so improves e.g.
 - substructure detection (e.g. Bacon et al 2006)
 - halo shape determination (e.g. Hawken & Bridle 2009)

SHEAR

- \mathcal{F} : F Flexion
 - γ : Shear
 - \mathcal{G} : G Flexion
- See e.g. Goldberg & Bacon 2005, Bacon et al 2006, Massey et al 2007

Bacon et al 2006

FFLEXION

Bacon et al 2006

 \mathcal{F}

 \mathcal{G}

G FLEXION

Bacon et al 2006

 \mathcal{F}

 \mathcal{G}

MASS RECONSTRUCTION

Shear only

Flexions only Shear & Flexions

Bacon et al 2006

THE MV PIPELINE

- Decompose galaxy
 image into a series of
 shapelets (e.g. Refregier 2003,
 Refregier & Bacon 2003, Kuijken 2006)
- Create shapelet model of sheared and flexed galaxy
- Fit observed image to model to find amount by which it is sheared and flexed

Velander et al (in prep.)

FLASHES

FLASHES: FLexion And SHEar Simulations

Variations:

- Intrinsic galaxy ellipticity
- Galaxy profiles
- SNR
- PSF ellipticity

FLASHES

STEP4/GREAT08-like

- 10000 galaxies per image
- One shear/flexion value across image
- Use STEP-parameterisation:
 - $\langle \gamma_i^{\text{measured}} \rangle \gamma_i^{\text{input}} = m_i \gamma_i^{\text{input}} + c_i$
 - m = multiplicative bias; c = additive bias

FLASHES RESULTS

- Purple: shear
- Pink: F flexion
- Green: G flexion
- F flexion
 underestimated
 with a
 multiplicative bias
 of -0.2 at best

Velander et al (in prep.)

Malin Velander (Leiden)

"GALAXY-GALAXY" SIMULATIONS

- STEP4-like "galaxygalaxy" simulations
- Central lens object has
 Sérsic index n = 1
- Gaussian sources placed in rings at evenly spaced distances from center
- SNR ~200
- PSF: Pseudo-Airy with 10% spikes

101.5

102

102.5

103

101

99.5

100

100.5

103.5

P1

Kuijken 2006

GG SIMULATION RESULTS

Light from nearby bright objects strongly affects the densing signal!

BRIGHT OBJECT REMOVAL

- Create Sérsic model of nearby object
- Subtract model from source postage stamp
- Remove nearby objects depending on brightness and distance from source

GG SIMULATION CORRECTED RESULTS

Velander et al (in prep.)

COSMOS ANALYSIS

- Shear/flexion from MV pipeline
- Parametric CTI
 correction as in
 Schrabback et al 2010
- PSF correction done using PCA as in Schrabback
- Photo-z's from Ilbert et al 2009
- Galaxy-galaxy signal

COSMOS RESULTS

Velander et al (in prep.)

...AND THE G FLEXION

BOR EFFECT

Velander et al (in prep.)

Malin Velander (Leiden)

POWERLAW CONSTRAINTS

- Fit powerlaw to signals • $\gamma = -Ad^{-n}$ • $\mathcal{F} = (n-2)Ad^{-n-1}$ • Purple: shear $(1-3\sigma)$
- Green: F flexion $(1-3\sigma)$
- White: combined 3σ
- Prefer n < 1

Velander et al (in prep.)

SUMMARY

- Flexion adds crucial information to halo shape measurements and substructure detection
- Galaxy-galaxy flexion has been detected in COSMOS but is still noisy and seems overestimated compared to shear
 - Could also indicate shear underestimation
- In future, try ground-based larger datasets (CFHTLS, RCS2, KiDS...)