

BIASES IN, AND CORRECTION TO, KSB SHEAR MEASUREMENTS

VIOLA ET AL. 2010 (ARXIV:1006.2470)

Massimo Viola

In collaboration with : Peter Melchior & Matthias Bartelmann

19/07/2010 10 years of cosmic shear

FROM SHAPE TO ELLIPTICITY

Model indepent approach based on the moments of the source:

$$M_{ij...k} = \int I(\vec{\theta})\theta_i\theta_j...\theta_k d^2\theta$$

In theory:

$$\chi = \frac{(Q_{11} - Q_{22}) + 2iQ_{12}}{Q_{11} + Q_{22}}$$

In practise: real images are noisy! Weighting function is required

KSB

ASSUMPTIONS:

- 1) Strength of apparent distortion
- 2) Width of the weighting function
- 3) Mapping between convolved an unconvolved ellipticity
- 4) Ellipticity of the PSF

O. AVERAGING

$$0 = \langle \chi^s \rangle = \left\langle \frac{\chi - 2g + g^2 \chi^*}{1 + |g|^2 - 2\Re(g\chi^*)} \right\rangle$$

Shear = average over galaxy's ellipticities

$$\langle \tilde{g} \rangle = \left\langle \frac{\chi (1 - \sqrt{1 - |\chi|^2})}{|\chi|^2} \right\rangle$$

Shear = average over shear's estimators

Difference depends on the moments of the intrinsic ellipticity distribution

Since the relation between g and χ is non linear shear estimation and average do not commute.

1. STRENGTH OF THE APPARENT DISTORTION

1. Shear is small (on average)

$$\chi_{\alpha} - \chi_{\alpha}^{s} = g^{\beta} P_{\alpha\beta}^{sh} = g^{\beta} (-2\chi_{\alpha}\chi_{\beta} + 2\delta_{\alpha\beta})$$

2. Definition of a shear estimator for a single object (is not small in general)

$$\tilde{g}^{KSB} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{2} + \frac{\chi_1^5}{2} + \dots$$

- If shear is not assumed to be small:

$$\tilde{g}^{KSB3} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{8} + \frac{\chi_1^5}{16} + \dots$$

- If P is equal to half of its trace:

$$\tilde{g}_1^{KSBtr} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{4} + \frac{\chi_1^5}{8} + \dots$$

No mathematical justification !

- If shear & ellipticity are assumed to be small:

$$\tilde{g}_1^{KSB1} = \frac{\chi_1}{2}$$

1. STRENGTH OF THE APPARENT DISTORTION

1. Shear is small (on average)

$$\chi_{\alpha} - \chi_{\alpha}^{s} = g^{\beta} P_{\alpha\beta}^{sh} = g^{\beta} (-2\chi_{\alpha}\chi_{\beta} + 2\delta_{\alpha\beta})$$

2. Definition of a shear estimator for a single object (is not small in general)

$$\tilde{g}^{KSB} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{2} + \frac{\chi_1^5}{2} + \dots$$

- If shear is not assumed to be small:

$$\tilde{g}^{KSB3} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{8} + \frac{\chi_1^5}{16} + \dots$$

- If P is equal to half of its trace:

$$\tilde{g}_1^{KSBtr} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{4} + \frac{\chi_1^5}{8} + \dots$$

No mathematical justification !

- If shear & ellipticity are assumed to be small:

$$\tilde{g}_1^{KSB1} = \frac{\chi_1}{2}$$

2. WIDTH OF THE WEIGHTING FUNCTION

SOMETESTS

Ring test

Intrinsic ellipticity = 0.3g=(0.1,0.05)

Noise test

Rms = 1e-3Number object = 100

PSF: HOW SHOULD BE TREATED... (DEIMOS: MELCHIOR ET AL. IN PREP)

3. MAPPING BETWEEN CONVOLVED AND UNCONVOLVED ELLIPTICITY

$$\chi^{obs}_{\alpha} = \chi^{sh}_{\alpha} - \chi^g_{\alpha}$$

Source plane

Mapping between shear and ellipticity (KSB,KSB1,KSBtr,KSB3)

$$\chi^{sh}_{\alpha} = P^{sh}_{\alpha\beta}g^{\beta}$$

+ PSF correction

$$\chi^g_{\alpha} = P^{sm}_{\alpha\gamma} (P^{sm,*})^{-1}_{\gamma\beta} \chi^{sh,*}_{\beta} \qquad P^{sm}_{\alpha\beta} = \frac{M}{TrQ} \delta_{\alpha\beta}$$

The "deconvolution" done by KSB is correct only if the unconvolved ellipticity is small (almost never the case) or if the PSF width vanishes

EFFECT OF THE PSF IN THE MEASUREMENTS

Shear estimates depend on the width of the PSF (via A)

EFFECT OF THE PSF IN THE MEASUREMENTS

Shear estimates depend on the width of the PSF (via A)

SOMETESTS

PROBLEMS IN KSB

- Shear estimates are averaged instead of ellipticities.
- Individual shear estimates are computed under the assumption that the shear is small, but that's true only AFTER averaging ---> Overestimation
- PSF deconvolution is only approximated, and the approximation holds only for objects which are almost circular or for vanishing PSF. ---> Underestimation
- Anisotropies in the PSF can be proper correct only if they are VERY small

Assumptions made in KSB derivation and application are fulfilled only if the dispertion of the **intrinsic ellipticity** of galaxies **vanishes** and the **shear** is **small**. Moreover the **PSF** must be very narrow.

OUTLOOK

Melchior, Viola, Schäffer, Bartelmann 2010 (to appear soon!)

DEIMOS:

- Model independent (moment based)

- Perform an exact PSF deconvolution in moment space

- Does not rely on any assumption about shape of the PSF

$$\{g\}_{0,0} = \{g^{\star}\}_{0,0}$$

$$\{g\}_{0,1} = \{g^{\star}\}_{0,1} - \{g\}_{0,0} \{p\}_{0,1}$$

$$\{g\}_{1,0} = \{g^{\star}\}_{1,0} - \{g\}_{0,0} \{p\}_{1,0}$$

$$\{g\}_{0,2} = \{g^{\star}\}_{0,2} - \{g\}_{0,0} \{p\}_{0,2} - 2\{g\}_{0,1} \{p\}_{0,1}$$

$$\{g\}_{1,1} = \{g^{\star}\}_{1,1} - \frac{1}{2}\{g\}_{0,0} \{p\}_{1,1} - \{g\}_{0,1} \{p\}_{1,0} - \{g\}_{1,0} \{p\}_{0,1}$$

$$\{g\}_{2,0} = \{g^{\star}\}_{2,0} - \{g\}_{0,0} \{p\}_{2,0} - 2\{g\}_{1,0} \{p\}_{1,0}$$

OUTLOOK

Melchior, Viola, Schäffer, Bartelmann 2010 (to appear soon!)

1. STRENGTH OF THE APPARENT DISTORTION

KSB : shear is small BUT ellipticity is not small....

$$\chi_{\alpha} - \chi_{\alpha}^{s} = g^{\beta} P_{\alpha\beta}^{sh} = g^{\beta} (-2\chi_{\alpha}\chi_{\beta} + 2\delta_{\alpha\beta})$$
$$\tilde{g}^{KSB} \simeq \frac{\chi_{1}}{2} + \frac{\chi_{1}^{3}}{2} + \frac{\chi_{1}^{5}}{2} + \dots$$

Valid only at I order...BUT...ellipticity is not small!

KSBtr : shear is small, ellipticity is not small and P is equal to half of its trace

$$\tilde{g}_1^{KSBtr} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{4} + \frac{\chi_1^5}{8} + \dots$$

No mathematical justification !

KSB1 : shear is small and ellipticity is small

$$\tilde{g}_1^{KSB1} = \frac{\chi_1}{2}$$

Valid only at first order..BUT...ellipticity is not small!

KSB3 : shear and ellipticity are not assumed to be small...

$$\tilde{g}^{KSB3} \simeq \frac{\chi_1}{2} + \frac{\chi_1^3}{8} + \frac{\chi_1^5}{16} + \dots$$