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Classic Weak Lensing:
2D projection

Clowe et al. 2006

No extraction of 
 line-of-sight information
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Moving toward 3D
Parametric Methods

e.g. Wittman et al. 2001 Fitted SIS and NFW profiles
at different redshifts
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Moving toward 3D
Non-parametric “21/2D” reconstruction

3D representation 
from three source-
planes

Data: COSMOS
Massey et al. 2007
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Linear Mapping

=M  n
Given a noisy measurement 
γ, we want to solve for δ:

Best estimator is due to
Aitken (1935):

Problem: Noise can obscure the signal 
by several orders of magnitude!

(Hu & Keeton 2002)
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The Problem: Shear is too noisy
Hu & Keeton 2002: 

Aitken estimator is no 
good for noisy shear data.

z

δ
(Note: δ < -1 
is unphysical)

Different lines: 
Factors of 10 
in noise
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A Solution: Wiener Filtering

Hu&Keeton 2002, Simon et al. 2009

Add a penalty to the χ2 which 
suppresses large oscillations: 
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Key results:
 - successful in suppressing noise
 - leads to a bias and spread in lens redshift
 - requires NL power spectrum as input
 - requires a relatively slow iterative solution
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Can we do better?

Singular Value Decomposition (SVD)
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Small singular values lead to large noise in δ!
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99.99% of variance is in less than 1/3 the SVD!

Standard trick:
   truncate the small singular values:

Singular Values

U V TU  V T
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The Challenge...
For present-day surveys:

128x128 pixels

20 redshift bins

Matrix contains 
1.3 x 1011  elements!
    ~2TB in memory!
 
SVD is non-trivial 

Solution: tensor decomposition, 
and a few reasonable approximations

(details in our upcoming paper)

Solution: tensor decomposition, 
and a few reasonable approximations

(details in our upcoming paper)
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More filtered

Less filtered

Preliminary Results
Wiener filter       vs.         SVD filter

SVD shows less 
angular spread

SVD shows less 
angular spread
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Wiener filter         vs.         SVD filter

More filtered

Less filtered
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More filtered

Less filtered

Wiener filter         vs.         SVD filter

Signal suppression for high 
Wiener filtering

Signal suppression for high 
Wiener filtering
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More filtered

Less filtered

Wiener filter         vs.         SVD filter

Qualitatively similar for low filtering:
Noise induces spurious peaks

Qualitatively similar for low filtering:
Noise induces spurious peaks
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More filtered

Less filtered

Wiener filter         vs.         SVD filter
SVD: faster computation time:SVD: faster computation time:

~10x~10x

~100x~100x

~1000x~1000x
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More filtered

Less filtered

Wiener filter         vs.         SVD filter
SVD: faster computation time:SVD: faster computation time:

~10x~10x

~1000x~1000x
Linear scaling with survey area: SVD method 

can do 20,000 deg2 field (e.g. LSST) in ~2 hours

Linear scaling with survey area: SVD method 
can do 20,000 deg2 field (e.g. LSST) in ~2 hours

~1000x~1000x
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Angular Resolution and Redshift Bias

Input High filtering

Medium filtering Low filtering

(SVD filter)
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Input

Angular Resolution and Redshift Bias
(SVD filter)

Medium filtering Low filtering

High filtering

High filtering introduces a large bias
and spread in redshift of the lens

High filtering introduces a large bias
and spread in redshift of the lens
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High filteringInput

Medium filtering

Angular Resolution and Redshift Bias
(SVD filter)

Low filtering

Low filtering leads to less bias 
and spread in redshift, 

but much greater noise level 

Low filtering leads to less bias 
and spread in redshift, 

but much greater noise level 
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Input

Medium filtering

Angular Resolution and Redshift Bias
(SVD filter)

High filtering

Low filtering

This suggests a 2-stage process:
➢ Higher filtering to locate halos
➢ Lower filtering to determine redshift

This suggests a 2-stage process:
➢ Higher filtering to locate halos
➢ Lower filtering to determine redshift
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SVD Method WF Method

Comparison for multiple lenses:

(medium filtering level for each)
SVD does better at distinguishing close pairs



23

Summary & Preliminary Results:
● We've developed a new non-parametric 3D 
mass-mapping method

● The method improves upon the Wiener filter 
technique for signal-suppression & angular spread

● Problems with redshift spread & bias are still 
unresolved – similar to Wiener filtering

● Speeds are 10-1000 times faster than Wiener 
filtering – applicable to future large surveys
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