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Greenhouse effect
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Enhanced greenhouse effect

The Greenhouse effect

Increasing atmospheric CO, concentrations

enhances the planetary greenhouse effect.
O Equilibrium warming of 3+1°C per doubling of
atmospheric CO,.
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Ice—-core data before 1958. Mauna Loa data after 1958.
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Indicators

Global annual average temperature anomalies
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Consequences

> Increases 1n the frequency & intensity of heatwaves.

> Intensification of the hydrological cycle (evaporation & precipitation).
O Increase in the frequency and intensity of extreme precipitation events

A Droughts & floods(?)

> Continued sea level rise.
Q Potentially ~Im by 2100.
O Enhanced storm surge during extreme weather events.

> Extreme weather events.
O Expected increase in the frequency and intensity of extreme tropical cyclones.

» Ocean acidification.
O Impacting ocean ecosystems.

> Expansion of the Hadley cells.
O Changes to the actual climate zones.



Temperature anomaly (°C)

Impacts

Risk of severe impacts to land and
ocean ecosystems increases with
increasing warming.

O Outcome will depend largely on what

emission pathway we “choose” to
follow.

Tipping elements possibly -~ RCP8.5
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Committed warming

» When we get emissions to ~zero, the oceans will

take up some of what we’ve emitted.
Q 20-30% will, however, remain in the atmosphere for
thousands of years.

» Consequently, global warming will essentially stop.
Q There is no warming commitment.

» Sea level rise will, however, continue.
O Land warms faster than the oceans.
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Peak warming

The peak warming from a
pulse of emission occurs after
about 10 years.

O Emission reductions will have
an impact on a relatively short
timescale!

O Personal choices (flying, for
example) can have an impact.

Temperature Response (mK/GtC)
N

oLl ]
0 20 40 60 80 100

Time (years)

Ricke & Caldeira 2014



Irreversible!
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Cumulative emissions

Cumulative total anthropogenic CO, emissions from 1870 (GtCO3)
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» Approximate linear relationship between
warming and cumulative (total)

emissions.

Q ~2°C per 1000 GtC.
O Cumulative emissions to date ~600 GtC.
O Current emissions ~10GtC/year.

> Can use this to estimate how much we
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Mitigation pathways

Delaying emission reductions makes it
increasingly difficult to achieve a target

—~

(e.g., limiting warming to 1.5°C or 2°C). CS‘
Q

» The risk of severe impacts increases with )
increasing warming. ~
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» The sooner we start reducing emissions, and | O
the sooner we get to ~zero, the greater the %
chance we have of avoiding some of the é
more severe outcomes. )
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> Potential growth in aviation could mean that 8

emissions from flying make up a significant
fraction of the remaining budget.
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Take away points

> What we do today can make a difference on relatively short timescales.
O Formally, there i1s no warming commitment.
Q If we emit more, we’ll warm more. If we emit less, we’ll warm less.
Q In some sense, every bit helps.

> Ultimately, addressing climate change will require getting (net) emissions
to ~zero.
Q This will be challenging and will require changes to the entire energy system.
A Growth in aviation will make it more difficult to achieve our stated targets.

> The longer we delay making substantive cuts to emissions, the more
challenging the problem will become.

O The sooner we start, the more likely it 1s that we will avoid the more serious
outcomes.

O It will never be too late!



“The best time to start reducing our emissions was 20
years ago. The second best time 1s now!”



