Accretion and Feedback in the Formation of Massive Stars Rolf Kuiper

Collaborators: T. Hosokawa, A. Kölligan, N.D. Kee, D. Meyer, A. Bhandare, S. Owocki, A. F. McLeod, M. Reiter, P. D. Klaassen, C. J. Evans, K. G. Johnston, W. Kley, E. Vorobyov, A. Ahmadi, H. Beuther, H.W. Yorke, N. J. Turner, ...

Image Credit: ESA/Herschel

The Wonders of Star Formation aka HansFest September 04, 2018

Emmy Noether-Programm DFG Dense Forshingsgenenschaft

- MHD-driven Jets & Outflows: Launching, Acceleration, and Feedback (Kölligan & Kuiper 2018)
- Radiation Forces & Photoionization: Feedback in Time and Space (Kuiper & Hosokawa 2018)
- UV-Line Scattering Forces: Ablation, Disk Winds, and the Upper Mass Limit (Kee, Owocki, & Kuiper 2018a,b; Kee, Kuiper et al., in prep.)
- **Disk Fragmentation**: Variable Accretion, Luminosity Bursts and Binary Formation (Meyer, Kuiper et al. 2018; Kuiper et al., in prep.; Ahmadi, Kuiper et al., in prep.)
- First Larson Cores from Low-mass Stars to Massive Stars (Bhandare, Kuiper et al. 2018)

Software Development

- Magneto-Hydrodynamics PLUTO 4.1 (Mignone et al. 2007, 2012)
- **Self-Gravity** (Kuiper et al. 2010b)
- **Stellar Evolution** (Kuiper & Yorke 2013)
- **Dust Evolution**: Sublimation and Evaporation
- **Protostellar Outflows** (Kuiper, Yorke, & Turner 2015; Kuiper, Turner, & Yorke 2016)
 - MHD-driven Jets & Outflows (Kölligan & Kuiper 2018)
- Radiation
 - Hybrid Scheme: Stellar Irradiation + Continuum (Re-)Emission (Kuiper et al. 2010a)
 - now also in FLASH 4 (Klassen, Kuiper et al. 2014) & ORION (Rosen et al. 2017)
- Variable Equation of State: Thermal Dissociation and Ionization (Vaidya et al. 2015)
- **Photoionization**: Stellar Feedback + Recombination (Kuiper, Yorke, & Mignone, subm.)
- UV-Line Scattering (Kee, Owocki, & Kuiper 2018a,b)
- Grids: log-radial Spherical Coordinates and Cartesian, Cylindrical, stacked, ...
 - extremely high spatial resolution of the innermost object (disk, jet launching, first core)
 - ID spherical symmetry, 2D axial symmetry, and 3D available
 - Iong-term runs & parameter studies

MHD-driven Jets & Outflows

- What is the driving source of observed large-scale outflows?
- Is jet launching an universal (mass-independent) process?
- Does magnetic braking prevent disk formation?
- What is the efficiency of the accretion-ejection process?
- Does the outflow carry angular momentum (enabling disk accretion)?
- What is the effect from/onto the stellar environment?

Kölligan & Kuiper (2018)

MHD-driven Jets & Outflows

- non-ideal MHD
- isothermal
- axial and midplane symmetry (2D)
- high-resolution:

R_{min} = I au, $\Delta x = 0.1$ au; in comparison: Cartesian AMR: sink particle 40 au, $\Delta x = 10$ au (Myers et al. 2013); see also Matsushita et al. (2017): nested grid down to $\Delta x = 1$ au

MHD-driven Jets & Outflows

• early, single, broad, and massive outflow (as in Banerjee & Pudritz 2008)

- two distinguished outflow components
 - early collimated magneto-centrifugal jet (Blandford & Payne 1982)
 - late disk-driven magnetic tower flow (Lynden-Bell 2003)

→ see Poster 4D by Anders Kölligan

Kölligan & Kuiper (2018)

But do collimated jets around massive proto stars exist?

A scaled-up view of star formation?!

A scaled-up view of star formation?!

Zinnecker et al. (1998), Nature

Radiation & Photoionization Feedback

- Does feedback stop stellar accretion?
- Is the upper mass limit of stars due to feedback?
- Which feedback components dominate?

On what spatial scales? During which epochs?

Kuiper & Hosokawa (2018)

Radiation & Photoionization Feedback

Grid:

- Axial and midplane symmetry (2D)
- ∆x = 0.3 au

Feedback Physics:

- Outflows (subgrid)
- Radiation Forces
- Photoionization → HII Region

Two different Initial Conditions:

- Finite 100 M_{\odot} pre-stellar core (R = 0.1 pc)
- "Infinite" 1000 M_☉ mass reservoir (R = 1 pc)
 = 100 M_☉ pre-stellar core fed by large scales

Kuiper & Hosokawa (2018)

Radiation & Photoionization Feedback

Finite Mass Reservoir

Controlled by mass loss of the reservoir:✓ Outflows

 \rightarrow see also Talk by Anna Rosen

"Infinite" Mass Reservoir

Controlled by radiation forces:

- X Outflows
- **X** Photoionization
- Radiation Forces
- → see also Talk by Kei Tanaka

Kuiper & Hosokawa (2018)

Disk Fragmentation

- Do massive accretion disks undergo fragmentation?
- Does disk fragmentation prevent/enhance stellar accretion?
- Does disk fragmentation yield multiplicity?

Previous Disk Fragmentation Studies

Klassen, Pudritz, Kuiper et al. (2016)

Rosen et al. (2016)

Previous Disk Fragmentation Studies

Klassen, Pudritz, Kuiper et al. (2016)

Disk Fragmentation

No sink particles!

- spatially resolve the disk's pressure scale height & Jeans length
- Iog-radial + cos-polar grid:
 - 4.4 x 10⁷ grid cells total
 - 10⁷ grid cells in the disk (dynamic range V_{disk} / V_{cloud} ~ 10⁻⁵)

naturally includes ...

- fragmentation / local collapse
- shear
- migration / grav. torques
- merging
- orbital interaction
- mass transfer

Kuiper et al. (in prep.); Ahmadi, Kuiper et al. (in prep.)

Fragmentation & Star Formation

→ see Poster IC by Aida Ahmadi → see Talks by Katharine Johnston & Henrik Beuther

Migration

observational counterpart: Caratti o Garatti et al. (2016) & Stecklum et al. (2017)

→ see Poster 7C by Bringfried Stecklum

Formation of Spectroscopic Binaries! (Meyer, Kuiper, Kley, Johnston, Vorobyov 2018)
 → see Talk by Stefan Kraus

First Larson Cores

- Mass dependence of first Larson core properties
- How important is rotation?
- How important are magnetic fields?

Bhandare, Kuiper et al. (2018)

First Larson Cores

\rightarrow see Poster 3A by Asmita Bhandare

Bhandare, Kuiper et al. (2018)

Rolf Kuiper

September 04, 2018

- How is the gas accreted from the disk onto the stellar surface?
- How important is feedback on these smallest accretion scales?
- Boundary layer vs. magneto-spheric accretion?

Kee, Owocki, & Kuiper (2018a,b); Kee, Kuiper et al, in prep.

Kee, Owocki, & Kuiper (2018a,b); Kee, Kuiper et al, in prep.

Kee, Owocki, & Kuiper (2018a,b); Kee, Kuiper et al, in prep.

\rightarrow see Poster 2C by Nathaniel Dylan Kee

Kee, Owocki, & Kuiper (2018a,b); Kee, Kuiper et al, in prep.

Summary / Overview

MHD-driven Jets & Outflows

Disk Fragmentation

UV-Line Scattering Feedback

Rolf Kuiper

A parsec-scale Jet from a Massive Young Star

McLeod, Reiter, Kuiper, Klaassen, & Evans, Nature