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What determines stellar properties? =

. . c Gas inflow
Gravitational fragmentation of structured =— o
molecular gas to form stellar groups

® Exactly how the structure arises is probably not so important
(see Bate 2009c; Bertelli Motta et al. 2016; Liptai et al. 2016)

Cluster potential

Bonnell et al.

Dissipative dynamical interactions between Cumulative IMFs (no radiative feedback)
accreting protostars l S

® Gives an IMF-like mass distribution (competitive accretion),
but depends on global Jeans mass
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® Leads to observed multiplicity fractions and properties of
multiple systems
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® Enables the production of an (almost) invariant IMF

Without radiative
feedback

All three together can reproduce observed stellar
properties

Cumulative Fractional Number
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Competitive accretion & dynamical interactions

® Larson (1978)

® “..the final mass spectrum is determined at least
in part by accretion processes and the
competition between different accreting objects.

124

® Zinnecker (1982) Larson (1978)

® “..asimple analytic accretion model for the
protostellar mass spectrum ... in which
protostellar cores compete for the accretion of
the gas...”

® Competition for mass as M x M? produces a
Salpeter-like mass function

log(M/M,)
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The Apparent Invariance of the IMF ==
® Bate 2009b

® In the absence of stellar feedback, cloud fragments into objects separated by Jeans length

® Jeans length and Jeans mass smaller for denser clouds

® But, heating of the gas surrounding a newly-formed protostar inhibits nearby fragmentation

e Effectively increases the effective Jeans length and Jeans mass

® Effective Jeans length and Jeans mass increases by a larger fraction in denser clouds

e This greater fractional increase largely offsets the natural decrease in Jeans mass in denser clouds

® Bate (2009b) show that this effective Jeans mass depends very weakly on cloud density

Low-density Cloud Higher-density Cloud
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Bate 2012: 500 Mg cloud with decaying turbulence

Includes radative feedback and a realistic equation of state
Produces 183 stars and brown dwarfs, following all binaries, plus discs to ~1 AU
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Bate (2012): First large-scale calculation consistent
with wide range of observed stellar properties

Mass ratios

® Mass function consistent with Chabrier (2005)

® Stars to brown dwarf ratio:
N(1.0-0.08)/N(0.03-0.08) = 117/31 = 3.8

® Multiplicity consistent with field 55 \V\\\\

® Binary mass ratios consistent with field
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Orbital decay Misaligned inner/outer discs
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Bate (2018)

https://www.astro.ex.ac.uk/people/mbate/
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A Predictive Theory of Star Formation

® Now that we can produce realistic stellar populations

® Bate (2012)

® the challenge is to develop a predictive theory of star formation

® Initial conditions
® Cloud structure and kinematics
® Metallicity
® Magnetic fields
® Environment
® Level of external radiation (e.g. high-z, starbursts)

® Location (e.g. outer galaxy, galactic centre)
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Does the IMF vary with metallicity?

® Sub-solar metallicities

® Molecular gas generally hotter (reduced line-cooling and dust cooling)
® Jeans mass larger ( T2 )

® Characteristic stellar mass larger?

® Sub-solar metallicities

® Reduced opacity
® Collapsing gas optically thin and able to cool quickly at higher densities
® Jeans mass smaller (x 1/4/p )

® Characteristic stellar mass smaller?

® Past calculations varied only opacities
® Myers et al. (2011); Bate (2014) - no strong dependence of IMF on opacity




Radiative transfer with separate gas, dust, radiation temperatures (Bate & Keto 2015)
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Gas Temperature with Different Metallicities
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Dependence of the mass function on metallicity

Cumulative IMFs

® Results at end (tf=1.20):

® 7=0.017Z, 142 stars and BDs
® 7=0.17Z, 174 stars and BDs
® /=7, 255 stars and BDs
® /=37, 258 stars and BDs
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® Median masses range from 0.163-0.195 M, (Chabrier 2005 has 0.20 M)

® Low metallicity seems to produce slightly more brown dwarfs

® Reduced opacities: greater cooling at higher densities and more small-scale fragmentation
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Dependence of multiplicity on metallicity —

72=3 Z,

t

® No strong dependence of overall multiplicity

® Multiplicity strongly increases with primary mass

Multiplicity Fraction

® Indications that — e

z2=1 2, X

L

® Separations may decrease with decreasing metallicity

® see Moe & Kratter (2018) for observational evidence
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® No significant difference in binary mass ratio distributions [T R .§. T

C 2=0172, N
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Conclusions

® Characteristic stellar mass depends

® More on small-scale thermodynamics (thermal feedback) and dynamical interactions
® Than large-scale initial density, temperature, turbulence, and magnetic fields

® Calculations including thermal feedback can reproduce observed stellar properties
(Bate 2012, 2014; Krumholz et al. 2012)

® Working to predict the variation of stellar properties
® Stellar properties are resilient to changes in initial conditions and environment
® However, small changes in IMF and multiple star properties starting to be identified
® |ow-mass stellar mass distribution has VERY weak dependence on metallicity (Z>=0.01 Z)
® Weak dependencies on cloud density and level of interstellar radiation field

® Still need to

® Probe stellar properties over a much broader range of initial conditions

® Extend to massive stars




