Edinburgh Pathway Editor

visualization and data management tool for system biology

Anatoly Sorokin Edinburgh Centre for System biology

Outline

- Introduction to System biology
- Model exchange problem in System biology
- SBML & SBGN standard way exchange model
- Edinburgh Pathway editor

System biology

System biology

- Put together:
 - Metabolic pathways
 - Gene network
 - Signalling networks
 - Molecular interaction networks

System biology

- Sequencing gene prediction, functional assignment
- DNA array -- gene activity data
- Mass-spectrometry biochemical pathway data
- Double Yeast protein interaction data
- X-ray crystallography protein structure

System biology resorces

Metabolc and Signal Transduction Pathways Databases

- KEGG, WIT, EMP, BioCarta
- Science Signal Transduction Knowledge Environment (STKE), CSNDB, SPAD
- PathDB, BIND, BRITE, EcoCyc, MetaCyc, TransPath, GeneNetworks

Interactions Databases

- Ingenuity
- DIP, PIM, BRITE, Interact, ProNet, ProChart, Proteome
- Modelling activities
 - SBML, CellML
 - GeneNET
 - E-CELL
 - BioSpice
- Visualisation and editing
 - CellDesigner, Teranode, Pathway Editor

System biology modelling gap

"Biologist can be divided into two classes: experimentalists who observed things that cannot be explained, and theoreticians who explain things that cannot be observed." Katzir-Katchalsky

Two types of model

Heuristic model

- Keep expert knowledgeProved by experiment
- Lack of details

Numerical model

- Based on heuristic model
- Ready for simulation
- Contains arbitrary assumptions

System biology modelling gap

Models are distributed in large number of papers
Models are published in informal style
Difficult to trace all details

Systems Biology Markup Language (SBML)

- XML-based language to share model information
- Model of biological process
- Simulation oriented
- Expect detailed description of the process
- No structure to store annotation data

System Biology Graphical notation (SBGN)

Standard Graphical notation

Requirements

- (1) Expressiveness: The notation system should be able to describe every possible relationship among genes and proteins, as well as biological processes.
- (2) **Semantically unambiguous**: Notation should be unambiguous.
- (3) Visually unambiguous: Each symbol should be clearly identified and cannot be mistaken with other symbols. This feature should be maintained with low-resolution displays, as well as black/white printings.
- (4) Extension Capability: The notation system shall be flexible enough to add new symbols and relationship in a consistent manner. This may include the use of color-coding to enhance expressiveness and readability, but information shall not be lost even with black and white displays.

System Biology Graphical notation (SBGN)

Drawbacks

Created by modellers for modellers needs
Expect detailed description of the process
Lost of annotation data

Link model types together

Experimentalist oriented
Support heuristic models
Support "Round trip" development

Requirements

Validation of networks vs. controlled vocabularies
 of Small Molecules, Genes, Proteins, and transcripts to control confusion of multiple names across research areas.

Networks should allow adding of
Literature objects (Medline etc...)
Kinetic information to reactions
Export in wide variety of formats
Any desired data related to model creation

Build in links to, and loadpublicly available data sources...

Edinburgh Pathway Editor

A. Sorokin

Basic features

- Small number of basic objects to represent main concepts of the biological network
- Metadata-oriented design
- Flexible visual presentation
- Hierarchical data storage
- Customisable direct link to external databases
- Eclipse-based open plug-in design
- XML-based internal presentation
- Export to SBML

Main objects

- Shape represents the biological object or subsystem, treated as "a black box"
- **Port** interface to a Shape
- Process visualises sequences of events e.g. a biochemical reaction or protein interaction
- Link is used to represent any pair-wise relation between objects including "identity" or "act on" relations.

Metadata

Context define

New property types

- Text
- Simple data
- Visual properties (position, size, colour)
- Collections (text, simple data)
- List of object properties
- Inheritance
- Default value
- Visualisation properties
- Links to external databases

New property

🕅 Add new property	×
Property Name Image: Constraint of the second s	
Classes	

Inheritance, default value

🔎 Properties Glossa	ry 🔗 ContextEditor 🗙					
demo 💌						
STKE	····· Bidirectional Process	Name	Value	Regexp	Req	Mapp
GSK	Fork	Line style	Solid		-	
Gene Escherichia coli	Free Form Process	Text	NULL		-	
Equation tests	Group	Line width	1		-	
EMP	LabelContainer	Ports size	6		-	
Default context	±Link	Text	\$leader.Sign\$		-	
Integrin	Map	Background colo	RGB {255, 255, 255}		-	
KEGG	Port	URL	NULL		-	
	Process	Hover text	NULL		-	
	🚊 Rich Text Label	Foreground colo	RGB {0, 0, 0}		-	
	Compound_Label	🛨 Size	[-1,-1]		-	
	EC_Label	Label position	Auto		-	
	SignLabel		NULL		-	
	±. Shape	Image	NULL		-	

Citrate o	svole		FATTY ACID B	FATTY ACID BIOSYNTHESIS (path 2)					
Acetyl-CoA									
					<u>3-Uxo-</u>	<u>3-0</u>			
	3-UX0-			<u>3-Uxo-</u>	decanovi-	dec:			
Acietoacetyl-				9 CoA	CoA	5 64			
CoA									
						1 (1)			
<u>(S)-3-</u>	<u>(S)-3-</u>	(5)-3-	(5)-3-	(5)-3-	Hudroope	Hyp			
<u>Hydroxy-</u>	Hydroxy-	Hydroxy-	Hydroxy-	Hydroxy-	tetra-	🛉 bex			
butanoyl-	hexanoyl-	ectanoyl-	ecanoyi	dodecanovi-	f decanovi-	ec al construction of the second			
CoA		<u>CoA</u>	<u>CoA</u>	<u>CoA</u>		- <u>Co</u>			
	trans. Hex.	trans. Oct.	trans-Dec.	trans-	trans.	trar			
Crotopoyd	Tenord-	• 2-epoid-	* 2-epoid-	T Dodec-	Tetradec-	T Her			
CoA	CoA	CoA		2-enovi-	2-enovi-	₹ 2-e			
<u></u>				CoA	CoA	Co			
					Tetra-	He			
Butanoyl-	🕺 <u>Hexanovil</u>	5 Octanovi-	Decanoyl-	Dodecanoyl-	🛉 <u>decanovi-</u>				
CoA	Y CdA	Coo	Y CdA	CoA	Y <u>CoA</u>				

14/12/2005

A. Sorokin

Development team

Igor Goryanin, The University of Edinburgh
Kirill Paliy, EMP Project Inc.
Alex Selkov, EMP Project Inc.
Oleg Demin, Moscow State University

www.bioinformatics.ed.ac.uk/epe/