

Developing a base data layer in the OGSA-DAI project

2nd Workshop on Scientific Data Mining, Integration and Visualisation eSI, 14 - 15 December 2005

> Neil Chue Hong Project Manager, EPCC N.ChueHong@epcc.ed.ac.uk +44 131 650 5957

Overview

The Data Deluge

- challenges of increasing data availability
- benefits of bringing data together

OGSA-DAI

- overview
- use as a data integration base layer

Data Services: challenges to integration

- Scale
 - Many sites, large collections, many uses
- Longevity
 - Research requirements outlive technical decisions
- Diversity
 - No "one size fits all" solutions will work
 - Primary Data, Data Products, Meta Data, Administrative data, ...
- Many Data Resources
 - Independently owned & managed
 - No common goals
 - No common design
 - Work hard for agreements on foundation types and ontologies
 - Autonomous decisions change data, structure, policy, ...
 - Geographically distributed
- and I haven't even mentioned security yet!

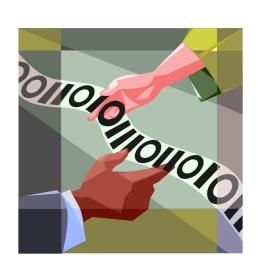
What is a data service?

- An interface to a stored collection of data
 - e.g. Google and Amazon
 - web services
- But the data could be:
 - replicated
 - shared
 - federated
 - virtual
 - incomplete
- Don't care about the underlying representation
 - do care about the information it represents

Use Cases for Data Services

- Data Filtering:
 - Single source producing large amounts of data distributed to many sites downstream
- Data Discovery:
 - many sources, many query entry points in a linked system
- Data Translation:
 - source to sink, conversion of data model / structure
- Data Federation:
 - many sources, linked to provide view as a single source
- Data Replication
 - full or partial copies to improve throughput
- Data Integration (model aggregation)
 - e.g. integration of time variant data, streams, files
- Data Integration (knowledge expansion)
 - forming links between databases to increase knowledge

Trade Offs


- Speed vs completeness
 - do you require the exact answer or an answer?
- Application specific vs language specific queries
 - how will users interrogate a data service?
- Static system vs Dynamic Discovery
 - do you actually have dynamic resources?
- Static vs Dynamic data
 - READ only, READ/INSERT only, UPDATE permitted
- Static vs Dynamic queries
 - optimisation over flexibility
- Intranet vs Internet
 - speed over security
- Single data model versus mixed data models
 - ease/speed over integration
- Queries vs Questions
 - assume that we know the structure when we form the query

Requirements on Data Services?

- Common Data Model e.g. RowSet
- Common Query Language(s) e.g. XQuery, SQL
- Standard access to
 - data resource schema information for schema mapping
 - physical data resource information for optimisation purposes
 - data resource descriptive information for discovery / integration
- Single, seamless security model
- Dynamic publication and discovery
- Multiple, efficient delivery methods
- Move computation towards data
- Data aggregation functionality
- Provenance information
- Replication information

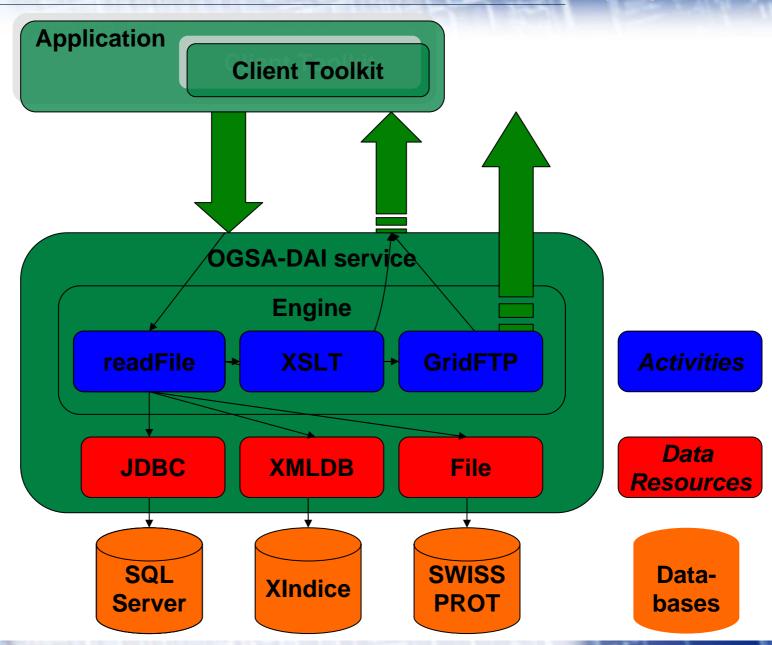
OGSA-DAI In One Slide

Neil Chue Hong

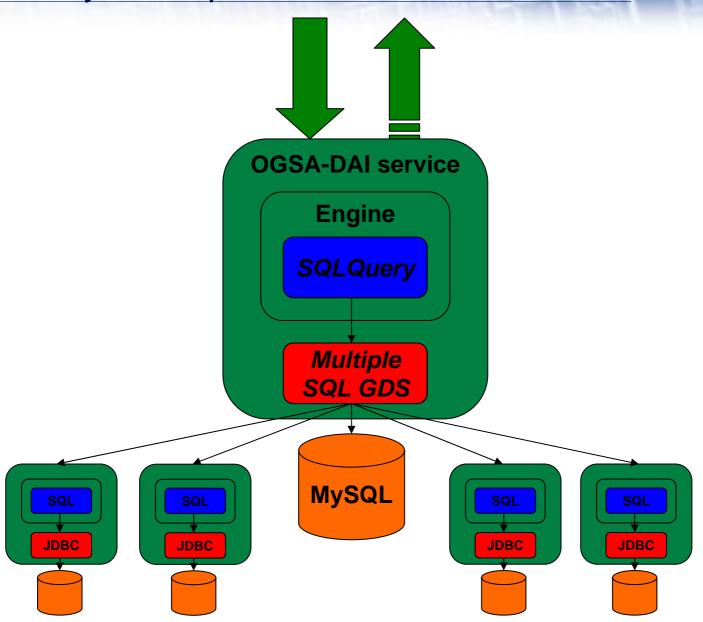
- An extensible framework for data access and integration.
- Expose heterogeneous data resources to a grid through web services.
- Interact with data resources:
 - Queries and updates.
 - Data transformation / compression
 - Data delivery.
- Customise for your project using
 - Additional Activities
 - Client Toolkit APIs
 - Data Resource handlers
- A base for higher-level services
 - federation, mining, visualisation,...

OGSA-DAI Design Principles - I

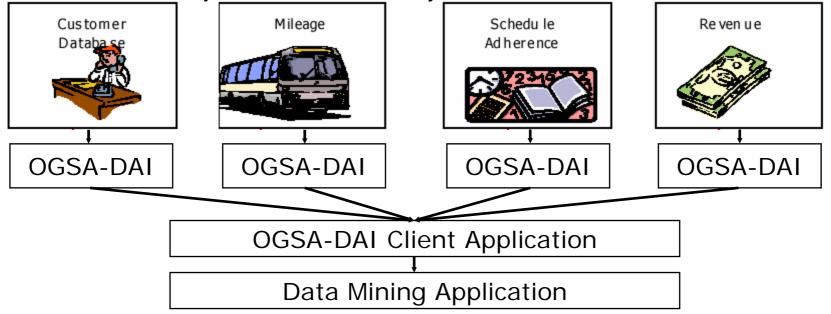
- Efficient client-server communication
 - Minimise where possible
 - One request specifies multiple operations
- No unnecessary data movement
 - Move computation to the data
 - Utilise third-party delivery
 - Apply transforms (e.g., compression)
- Build on existing standards
 - Fill-in gaps where necessary
 - DAIS specifications from DAIS WG at GGF


OGSA-DAI Design Principles - II

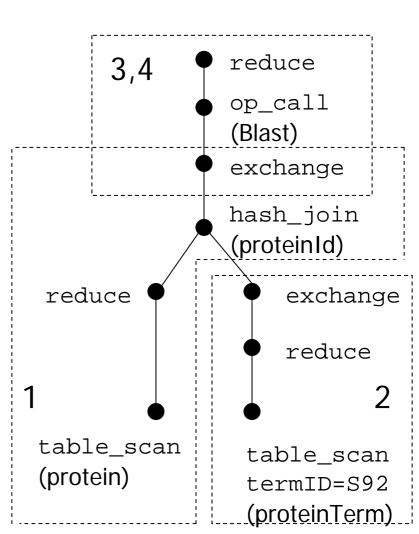
- Do not hide underlying data model
 - Users must know where to target queries
 - Data virtualisation is hard
- Extensible architecture
 - Modular and customisable
 - e.g., to accommodate stronger security
- Extensible activity framework
 - Cannot anticipate all desired functionality
 - Activity = unit of functionality
 - Allow users to plug-in their own

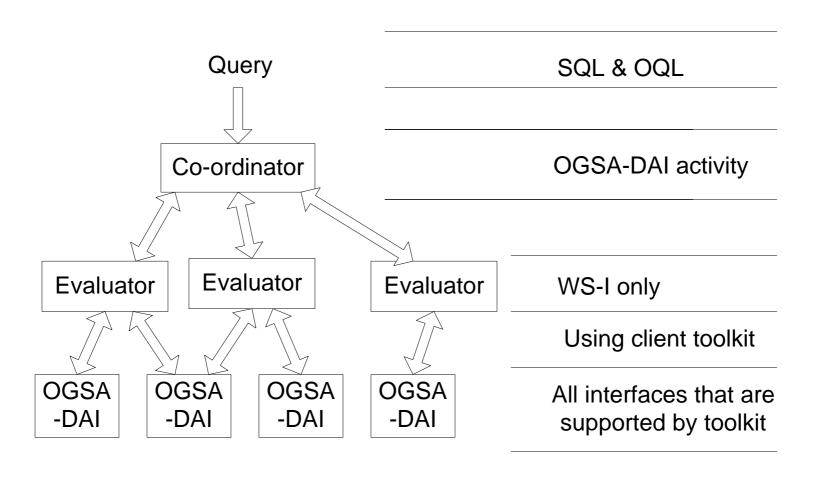

The OGSA-DAI Framework

Extensibility Example



- Data mining with the First Transport Group, UK
 - Example: "When buses are more than 10 minutes late there is an 82% chance that revenue drops by at least 10%"
 - "The results of this exercise will revolutionise the way we do things in the bus industry.", Darren Unwin, Divisional Manager, First South Yorkshire.


Client based joins, using temporary tables


Distributed Query Processing

- Higher level services building on OGSA-DAI
 - specialised metadata extraction
- Execute queries in parallel over multiple data resources
- Queries mapped to algebraic expressions for evaluation
- Parallelism represented by partitioning queries
 - –Use exchange operators
- Equality based joins in current release
 - supported types: long, integer, string, double and float

GridMiner: Data Mediation Service

Principles

- Tight Federation:
 - global (relational) schema
- Virtual integration:
 - leave the data where it is
 - always up-to-date data
- Build on data access from OGSA-DAI
- Not bound to special architecture
- Supported data sources:
 - RDBMS (via JDBC), XMLDB (Xindice), CSV files
- Operators: "Union all" and "inner join"
- Operators are XQuery based (using SAXON)

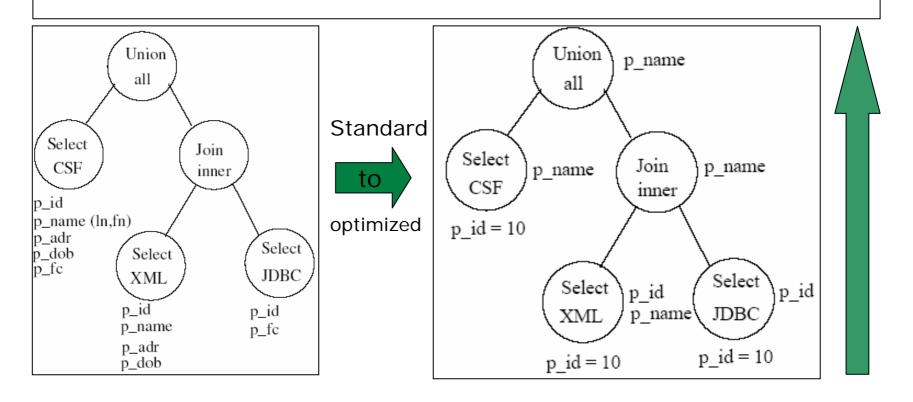
Data Integration Scenario

A(pid,name,adress,dob)

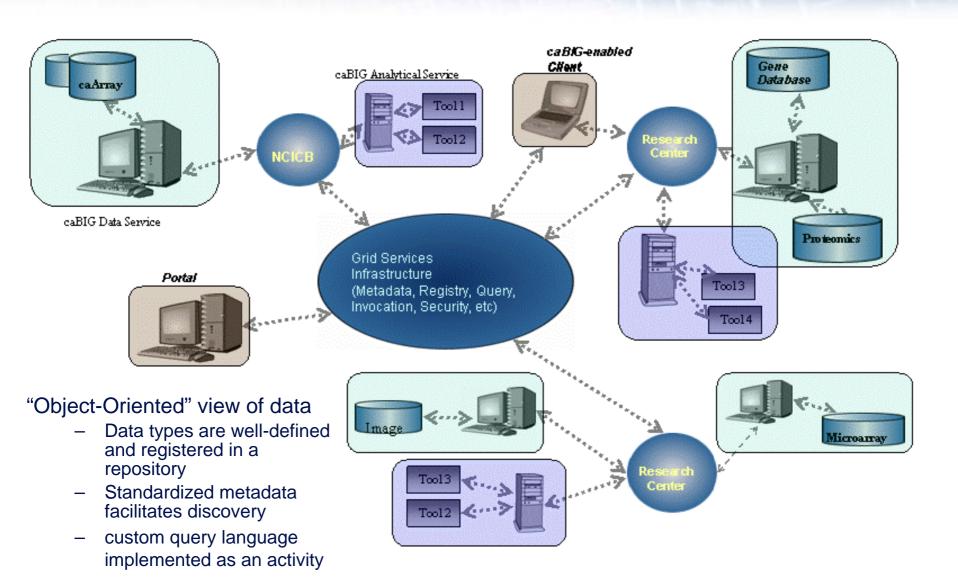
B(pid, first_contact)

data provided by hospital one

C(pid, ln, fn, adr, birthday, fc)


data provided by hospital two

Heterogeneities:


- Name in A is "First Last" (as the target format)
- Name in C has to be combined
- Distribution:
 - 3 data sources
- Java based schema mapping to global schema
 - types limited by WebRowSet

 Query: SELECT p_name FROM patient WHERE id=10

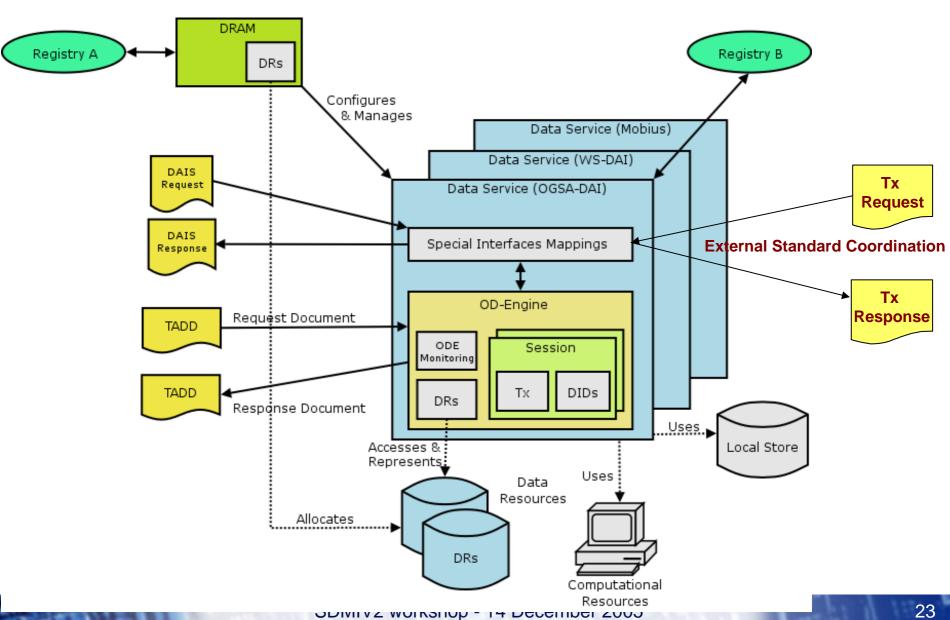
OGSA-DAI Challenges

- Metadata extraction
 - define a common model for e.g. database schema?
- Intermediate representation
 - between multiple models (relational, XML,...)
 - XML WebRowSet is flexible (c.f. GridMiner) but expansive
 - DFDL and GridFTP/parallel HTTP?
- Query definition
 - translation of queries
 - aggregation of results
- Data transport and workflow
 - workflow is typically compute driven
- Move computation to data
 - mobile code activities?
 - data services hosted on DBMS?

Contributing to OGSA-DAI

- Additional functionality:
 - Provide activities which implement specific functionality
 - Provide extra client functionality
 - Provide different security mechanisms
 - Provide higher level components and applications
- Different levels of contributions
 - Based on OGSA-DAI?
 - Works with OGSA-DAI?
 - Part of OGSA-DAI?

Future plans



- A new version of the OGSA-DAI Engine
 - should look mostly the same externally
 - better support for concurrency, sessions and monitoring
- Implementing new versions of specifications
 - DAIS Specifications
- Key things that we will be addressing:
 - Performance
 - A Security Model which can be applied across platforms
 - Full Transactions provision, including implementation of compensatory activities, distributed transactions
 - More data integration facilities
 - Better abstraction over DBMS variation
- Research projects looking at:
 - schema mapping
 - extended data resources

New OGSA-DAI Architecture

Associated Meetings and Workshops

- DIALOGUE Workshops (http://www.datagrids.org)
 - Data Integration Applications: Linking Organisations to Gain Understanding and Experience
 - Bringing together Data Integration middleware and application providers with users
 - Next one at NeSC: 9-10th February 2006
 - http://www.nesc.ac.uk/esi/events/636/
- Next Generation Distributed Data Management (HPDC15, Paris)
- Data Management on Grids (VLDB'06, Seoul)

Conclusions

- The benefits of trying to integrate data are hindered by challenges such as heterogeneity, scale and distribution
- A common data service layer should make data integration easier
- OGSA-DAI provides an extensible, data service based framework which makes it easier to implement data integration
- Future work on OGSA-DAI is addressing some of the key challenges to data integration

Further information

- The OGSA-DAI Project Site:
 - http://www.ogsadai.org.uk
- The DAIS-WG site:
 - http://forge.gridforum.org/projects/dais-wg/
- OGSA-DAI Users Mailing list
 - users@ogsadai.org.uk
 - General discussion on grid DAI matters
- Formal support for OGSA-DAI releases
 - http://www.ogsadai.org.uk/support
 - support@ogsadai.org.uk
- OGSA-DAI training courses

