Interoperability in data mining and visualization (and why was AstroGrid so hard?)

Clive Page NeSC 2005 December 13

AstroGrid 5 years old next week

- The meeting at which the AstroGrid Project was kicked off took place in Edinburgh in December 2000 almost exactly 5 years ago.
- So what has been achieved in 5 years?
- Software released, finally, in 2005. Not much sign of widespread use yet.
- Of course AstroGrid is now a 6-year project and has only been funded for 4.5 years of that so only around 3/4 complete.

Original Aims

- A working data grid for UK databases
- High throughput data mining facilities for interrogating those databases
- A uniform archive query and data mining software interface
- The ability to browse simultaneously multiple datasets
- A set of tools for integrated on-line analysis of extracted data
- A set of tools for on-line database analysis and exploration
- A facility for users to upload code to run their own algorithms on the data mining machines
- An exploration of techniques for open-ended resource discovery.

So – why the limited progress?

Two main reasons

- AstroGrid tried to tackle problems which were intrinsically hard and which astronomers have not solved even for local datasets, let alone over the wide area network.
- Too much emphasis on The Grid, XML, and other trendy and bleeding edge stuff from computer science.

AstroGrid has tackled hard problems

- Outstanding problems include
 - How to define metadata of universal applicability
 - How to tackle the diversity of data formats
 - How to cross match source catalogues
 - How to store and manipulate sky footprint information
 - How to do data mining and visualisation
- We really don't know how to solve these even on a local machine, let alone over the wide-area network.

Metadata problem

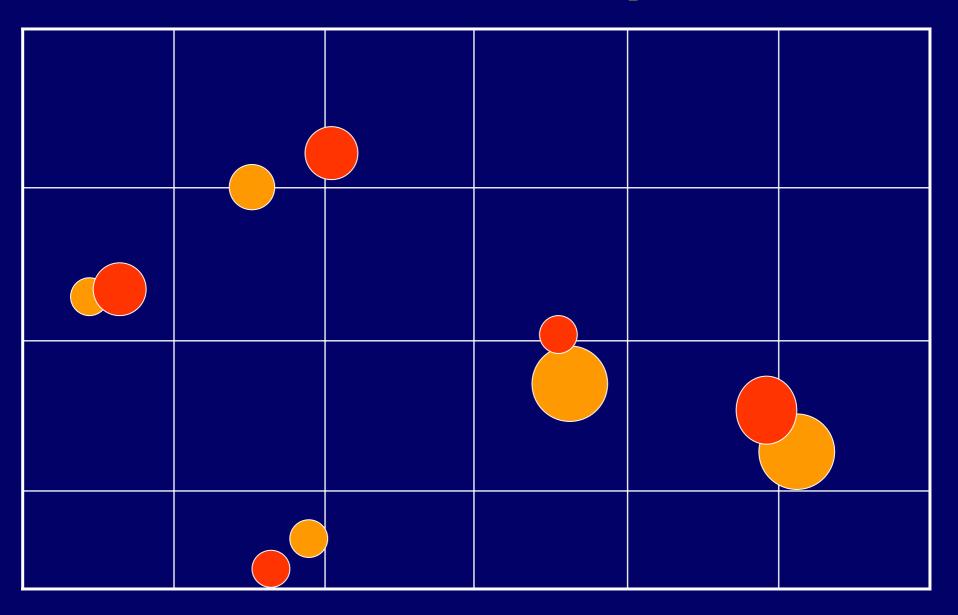
- Can't retrieve and combine data from remote systems without having standarised data descriptions. For tabular datasets this means:
 - Data type
 - Not much of a problem, even DBMS can do this.
 - Semantics UCD (universal content descriptor)
 - UCDs were starting to be used, then UCD1 invented.
 - Physical units
 - No standard yet, except ad-hoc ones in some FITS communities
 - Whether/where error information is present
 - Almost no standards yet but Starlink NDF solved this a decade earlier.
 - Handling of non-standard values (nulls, upper-limits, etc)
 - Very little uniformity yet, let alone standardisation.

Data Formats Problem (1)

- Astronomers really were fortunate to have an agreed format, FITS, which nearly all applications supported (the situation in most other branches of science is much worse).
- Then the VO projects invented VOTable I suspect more because FITS was not an XML-based format than because of really could not do the job.
- VOTable has 3 forms the most commonly used is around takes about 5 times as much space as a FITS file.
- A few applications support VOTable, but a very small proportion, compared to those which support FITS.
- Fortunately TOPCAT can convert between the two.

Data Formats Problem (2)

- But: hardly any non-astronomical applications understand FITS (do any understand VOTable?)
- If you want to ingest data into a DBMS, or use a statistics or visualisation package, lowest common format is CSV.
- CSV (character-separated value)
 - Not a standard at all, and very variable rules in practice.
 - E.g. do strings have to be enclosed in quotes?
 - No way of specifying data types
 - Column names, may be on line 1, or may not.
 - Physical units, UCDs, never supported.
 - All other metadata no chance.


CSV in practice

	Column names	Default field separator	Null values
Postgresql MySQL	(provided in CREATE statement)	Tab	\mathbf{N}
TOPCAT	Optional first line	Comma	Two successive commas
R	First line	Space	NA

Cross-matching Problem

- Valuable scientific information often results from combining results from two wavebands or two epochs. When applied to source lists.
 - What one wants to do is to cross-match them to find for each source in one list the counterpart(s) in the other.
- Straight forward in principle, surprisingly complicated in practice.

Schematic of cross-match problem

Cross match requirements

- Match on basis of overlap of error regions
 - May be circles, ellipses, or even more complex
 - Size may be specified as "N-sigma" or by likelihood, e.g. 90% contour.
- Ideally get exactly one counterpart for each source but often get none or more than one.
 - Choose best match, or include all?
 - Include unmatched cases (LEFT OUTER JOIN)?
- Which columns to copy to output include distance between matching sources?

Variety of cross match algorithms

- Databases with 2-d indexing such as R-tree can handle spatial join (e.g. Postgresql, MySQL).
- For DBMS without 2-d index (e.g. SQL Server) can use
 - Zone method
 - Pixel-based matching (HTM, HEALPix, Igloo, etc)
- Sort/sweep algorithm efficient for large catalogues implemented by CSIRO group.
- All of these depend on having both datasets resident in the same DBMS extending to distributed DBMS is an unsolved problem latency is a killer.

Other cross-match requirements

- Where there is no unique match, need to base match on other parameters such as flux, spectrum, distance/redshift etc.
- May need to know the density of sources in the field before the likelihood that a positional coincidence corresponds to a real match.
 - Computing source densities is non-trivial.
- I don't know of any application which supports all of these options as present, even for locally resident catalogues.

A Resource Discovery Problem – sky footprints

- Current plans for VO Registry can find resources such as sky survey results.
- But most telescopes and space observatories have only performed a sequence of discrete pointings (e.g. HST, XMM, Chandra, Integral, etc.)
- To find data available in given part of sky need to store the sky area covered by each observation of each observatory.
 - Cover sky with grid of pixels and store as bitmap?
 - 1 arcmin \rightarrow 18.5 Mbytes.
 - Store each pointing as sequence of HTM or HEALPix indices?
 - XMM-Newton pointings at 1 arcmin \rightarrow 11 Mbytes.
- Is there a better way almost certainly, but not yet researched enough.

XMM catalogue detections in one field

XMM EPIC T_{exp} =15 ksec

XMM cat srcs

Milce Watson Leicester University

Finding duplicate detections

- Some fields overlap so get duplicate detections.
- Resolving these surprisingly difficult
 - RDBMS designed to handle sets with absolutely no duplication.
 - So no built-in software to handle duplicates.
 - Best DBMS method is to start with a spatial self-join to identify duplicates, then weed or merge rows later.
 - Can be done in Postgres with the assistance of some procedural code - which Postgres allows in its userdefined functions (= stored procedures).

Finding anomalies

- Important to check for oddities for two reasons
 - Generally the result of instrumental imperfections, or software bugs, or just source confusion in crowded fields.
 - These need to be identified to remove bad entries from the final catalogue.
 - May be genuine scientific discoveries
 - Need to be studied further and published.

Functionality needed

- Select extrema, e.g. values over $N\sigma$ above/below the mean
- Plot histograms to inspect shape, examine tails
- Plot X vs Y for many pairs of columns
- In many cases, e.g. fluxes, need to take logarithms first
- When anomalous entry is found examine all the other properties of this source (all 300 of them) comparing to what is expected.

Software used

- RDBMS Postgres
- Table handlers FTOOLS and TOPCAT
- Statistics package R
- General purpose package IDL.
- Various graphics packages (IDL, Grace, GnuPlot, etc).
- Both TOPCAT and R can in principle access tabular data from a DBMS.

– Have to jump through hoops to get this working.

• Otherwise – only common format is CSV.

Conclusion: where to go next?

- Is XML the solution? If so VOTable may be a start.
- Metadata is UCD1 the solution if so need to campaign for widespread implementation.
- Cross-matching: probably DBMS with spatial indexing is the best general-purpose solution. But how to do this over the wide area net is an unsolved problem.