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Overview

e Named Entity Recognition
e The SEER project

e BIONER

e Porting to New Domains

e AstroNER



Named Entity Recognition

e As the first stage of Information
Extraction, Named Entity Recognition
(NER) 1dentifies and labels strings In
text as belonging to pre-defined
classes of entities.

e (The second stage of Information
Extraction (IE) identifies relations
between entities.)

e NER or full IE can be useful technology
for Text Mining.



Named Entity Recognition

e Early work in NLP focused on general
entities in newspaper texts e.g.
person, organization, location, date,
time, money, percentage



Newspaper Named Entities

Helen Weir, the finance director of
was handed a allowance
to cover the costs of a relocation that appears
to have shortened her commute by around 15
miles. The payment to the 40-year-old
amounts to roughly a mile to allow
her to move from to

after an internal promotion.




Named Entity Recognition

e For text mining from scientific texts,
the entities are determined by the
domain, e.g. for biomedical text,
gene, virus, drug etc.



a Mamed Entity Recognition - Microsoft Internet Explorer
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Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the -:201 to -130 region of
the long terminal repeat.

Eim JY, Gonzalez-Scarano F, Zeichner 8L, Alwine JC.

Department of Meurology, University of Pemmsylvama IMedical Center, Philadelphia 19104-6146.

In prewicus _ uzing the chlorarnphenicel acetyltransferase repotter gene systern, we determined that _ between -

201 and -130 (relative to the transcription start site) of the human immunodeficiency wirus type 1 long tertninal repeat (LTR) caused moderate decreases in
franscriptional achvity in 2 T-cellline (S. L. Zeichner, I V. H. Kim, and J. €. Alwine, I. Virel §5:2436-2444, 1991). In order to confirm the significance of this
region in the context of viral replication, we constructed several of these _ (=201 to -184, F183 te -166, -165 to -148, and 148 to -130) in prowiruses
and prepared wiral stocks by cocultivation of transfected ED cells with CEME=1T4 cells. In addibon, two mutations between =23 and -76 and between =73 and -53
were utllized, since they affect the nuclear factor kappa B (INF -kappa B)- and Spl-bindmg sites and were expected to dimimsh viral replication. Our results suggest
that while transfection analyses offer an adequate apprommation of the effects of the LS mutations, the analysis of_ using a mutant viral stock presents
a more accurate picture, which is sometimes at vanance with the transfection results. Three mutants (-201/-184 F3CE, -165/- 148 WIS, and - 147-130 1305 had
effects on _ that were much more severe than the effects predicted from their performance m _ and the effects of two -
- (=201/-184 DS and -1834-166 DS were not predicted by thewr effects in transfection. In addition, we observed cell type-specific permmissiveness to
replication of some mutant stuses. Tn the cell types tested, the _ indicated an apparent recquirement not only for the intact NFE-kappa B and SP1-binding
gites but also for several regions between =201 and -130 not previously associated with wiral infectiwity.
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The SEER Project

e Stanford-Edinburgh Entity Recognition

e Funded by the Edinburgh Stanford Link
Jan 2002 — Dec 2004

e Focus:
- NER technology applied in a range of new domains

- generalise from named entities to include term
entities

- machine learning techniques in order to enable
bootstrapping from small amounts of training data

e Domains: biomedicine, astronomy,
archaeology




Biomedical NER Competitions

e BioCreative

- Given a single sentence from a Medline
abstract, identify all mentions of genes

- “(or proteins where there is ambiguity)”

e BIONLP

- Given full Medline abstracts, identify five
types of entity

- DNA, RNA, protein, cell line, cell type



The Biomedical NER Data

Sentences Words| NEs/Sent
BioCreative
Training 7,500| ~200,000 ~1.2
Development 2,500 ~70,000 ~1.2
Evaluation 5,000 ~130,000 ~1.2
BioNLP
Training ~19,000| ~500,000 ~2.75
Evaluation ~4,000| ~100,000 ~2.25




Evaluation Method

e Measure Precision, Recall and F-score.

e Both BioCreative and BioNLP used the
exact-match scoring method

e Incorrect boundaries doubly penalized as
false negatives and false positives.

chloramphenicol acetyl transferase reporter gene

chloramphenicol acetyl transferase reporter gene (FN)
transferase reporter gene (FP)

h



The SEER BIONER System

e Maximum Entropy Tagger in Java

- Based on Klein et al (2003) CoNLL
submission

- Efforts mostly in finding new features
e Diverse Feature Set

- Local Features
- External Resources



External Resources

e Abbreviation

e TnT POS-tagger
e Frequency

e (Gazetteers

e Web

e Syntax

e Abstract

e ABGENE/GENIA



Mining the Web

Web lmages Groups Mews  Froogle more »

CO )&E&& |"glucocorticaid protein OR binds OF kinase '~ Search "ce'j f“’“h

Web Fesults 1- 10 of abo or “glucocorticoid protein OR binds OR kinase OR ligation™ (0.42 seconds)
Entity Type Query #
hits

PROTEIN |"glucocorticoid protein OR binds OR 234
kinase OR ligation”

DNA "glucocorticoid dna OR sequence OR 101
promoter OR site”
CELL_LINE |"glucocorticoid cells OR cell OR cell 1
type OR line"
CELL_TYPE |"glucocorticoid proliferation OR 12

clusters OR cultured OR cells”

RNA "glucocorticoid mrna OR transcript OR 35




Feature Set

Word Features
(All time s e.g.
Monday, April are
mapped to lower
case)

Wi

Wi-1

Wi+1

Last “real” word

Next “real” word

Word Shape

shape;

shape;.1

shapej.1

shape;.; + shape;

shape; + shapej:s

shape;.; + shape; + shapej+1

Word Shape+Word

Wi.1 + shape;

Wi.1+ Shape;

Previous NE

NE;.1

NE;»+ NEi;

NE;.1+W;

Previous NE + POS

NE;.1+POS;.1+POS;

NE;.o+ NE;.1+POS;,+POS; 1 +POS;

Previous NE +

NE;_; + shape;

Any of the 4 previous words
Any of the 4 next words
Bigrams Wi + Wig
Wi + Wi
TnT POS POS;
(trained on GENIA | POS;.¢
POS) POS;.1
Character Up to a length of 6
Substrings
Abbreviations abbr;
abbr;.; + abbr;
abbr; + abbr;,;
abbr;.; + abbr; + abbr;y;
Word + POS w; + POS;

Wi + POS;

Wi+1 + POS;

Word Shape NE;.1 + shapej.1

NE;.; + shape;.; + shape

NE;.o+ NE;.;+ shape;., + shape;.; + shape
Parentheses Paren-Matching — a feature that signals

when one parentheses in a pair has been
assigned a different tag than the other ina
window of 4 s




Postprocessing - BioCreative

e Discarded results with mismatched
narentheses

e Different boundaries were detected when

searching the sentence forwards versus
backwards

e Unioned the results of both; in cases where
boundary disagreements meant that one
detected gene was contained in the other,
we kept the shorter gene




Results

BioCreative Precision |Recall |F-Score
Gene/Protein 0.828 0.836 |0.832
BioNLP Precision |Recall |F-Score
Protein 0.774 0.685 |0.727
DNA 0.662 0.696 [0.679
RNA 0.720 0.659 |0.688
Cell Line 0.590 0.471 |0.524
Cell Type 0.626 0.770 [0.691
Overall 0.716 0.686 [0.701




What If You Lack Training Data?

e When porting to a new domain it Is
likely that there will be little or no
annotated data available.

e Do you pay annotators to create It?

e Are there methods that will allow you
to get by with just a small amount of
data’?

e Bootstrapping Techniques



AstroNER: The ‘Surprise’ Task

e AImS
- simulate a practical situation
- experiment with bootstrapping methods

- gain practical experience in porting our
technology to a new domain using limited
resources

- monitor resource expenditure to compare the
practical utility of various methods

e Collaborators: Bonnie Webber,
Bob Mann



Method

e The data was chosen and prepared In
secret to ensure fair comparison.

e The training set was kept very small
but large amounts of tokenised
unlabelled data were made available.

e Three teams, each given the same
period of time to perform task
e Approaches:

- co-training, weakly supervised learning,
active learning



Data and Annotation

Astronomy abstracts from the NASA Astrophysics Data
Service (http://adsabs.harvard.edu/) 1997-2003.

Sub-domain: spectroscopy/spectral lines

4 entity types: instrument-name, spectral-feature,
source-type, source-name

Data: abstracts sentences entities
training 50 502 874
testing 159 1,451 2,568
unlabeled 778 7,979

Annotation tool based on the NXT toolkit for expert
annotation of training & testing sets as well as active
learning annotation.


http://adsabs.harvard.edu/
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HST and Chandra Observations of Quasar PHL 1811

PHL 1811 is a nearby , luminous (z=0.192: M _ { V =-25.9 } ) quasar . With magnitudesof B=13.9and R = 13.9 , it
is the second brightest quasar known with z > 0.1 after 3C 273 | Optically it is classified as a Narrow - line Seyfert 1 galaxy
( NL51 }, a class generally known to be bright in soft X - rays . Thus, it was surprising that PHL 1811 was not detected in
the ROSAT All Sky Survey . A follow - up BeppoSAX observation detected the quasar , but revealed it to be anomalously
X -ray weak . The inferred ot _ { ox } was 1.9 -- 2.1 , much steeper than the nominal value of 1.6 for quasars of this optical
luminosity , and comparable to the X - ray weakest quasars . To investigate the cause of the X - ray deficiency , coordinated
HST UV spectra and Chandra observations were obtained in December 2001 . Two Chandra pointings , 9.4 and 9.8 ks in
length and separated by 12 days , netted 84 and 338 photons respectively . The X - ray spectra , fitted jointly by a power
law with Galactic absorption , yield a photon index of 2.09 +/- 0.14 . The flux varied by a factor of 4 between the two
observations . The lack of intrinsic absorption and the strong variability are interpreted as evidence that we observe the
central engine directly and unobscured . The HST STIS spectra , taken two days before the first Chandra observation ,
reveal a very blue continuum with little evidence for absorption or scattering intrinsic to the quasar . The inferred ot _ { ox }
for the two Chandra observations are 2.13 and 2.36 , respectively . We conclude from these observations that PHL 1811 is
intrinsically X - ray weak . The UV and optical emission - line spectra of PHL 1811 are remarkable . Neither forbidden nor
semiforbidden emission lines are detected . \1on { Fe } { 2 } is the dominant line emission in the UV . High metallicity is
implied by the large \ion { Fe } { 2 } to\ion { Mg } { 2 } ratio and relatively strong \ion { N } { 5 } . Low - ionization
emission linesof \ion { Al } {3} ,NalD, and Ca Il H & K are present , implying high optical depth . High - ionization
lines are very weak :\ion { C } { 4 } has an equivalent width of only ~ 5 A 7. The spectrum bears marked resemblance to
" line - less " high - redshift quasars discovered in the SDSS .

Key

Instrument-name Spectral-feature Source-type Source-name

embedded Spectral-feature embedded Source-type

T S R =c|]:u=*‘l'-t=._'|ﬁ“




Co-training

e Basic idea: use the strengths of one classifier to
rectify the weaknesses of another.

e Two different methods classify a set of seed
data; select results of one iteration, and add
them to the training data for the next iteration.

e \arious choices:

- same classifier with different feature splits, or two
different classifiers

- cache size (# examples to tag on each iteration)

- add labeled data to new training set if both agree, or
add labeled data from one to training set of the other

- retrain some or all classifiers at each 1teration



#sentences #Hwords #Hentities | #classes
SEED bio-data 500 12,900 1,545 5+1
astro-data 502 15,429 874 4+1
TEST bio-data 3,856 101039 8,662 5+1
astro-data 1,451 238,655 2,568 4+1
UNLABELLED DATA: ca. 8,000 sentences for both sets
START PERFORMANCE (F) Stanford C&C ™TnT YAMCHA
bio-data 56.87 48.42 41.62 50.64
astro-data 69.06 64.47 61.45 61.98

* best settings on biomedical data:

e Stanford, C&C, and TnT; cache=200; agreement; retrain Stanford only
e Stanford and YAMCHA; cache=500; agreement

e NOTE: in both cases limited improvement (max 2 percentage points)

e on astronomical data: no real positive results so far

TAKE HOME MESSAGE: COTRAINING QUITE UNSUCCESFUL FOR THIS TASK!
REASONS: Classifiers not different enough? Classifiers not good enough to

start with?




Weakly supervised

e Many multi-token entities, typically a head
word preceded by modifiers:
- Instrument-name: Very Large Telescope
- source-type: radio—quiet QSOs
- spectral-feature: [O 11] emission

e Find most likely modifier sequences for a
given initial set of concepts

e Build a gazetteer for each entity subtype
and use 1t for markup.

e Results: F-score = 49%.



Active Learning

e Supervised Learning
- Select random examples for labeling

- Requires large amount of (relatively expensive)
annotated data

e Active Learning

- Select most ‘informative’ examples for labelling

- Maximal reduction of error rate with minimal
amount of labelling
- Faster converging learning curves

e Higher accuracy for same amount of labelled data
e Less labelled data for same levels of accuracy



Parameters

e Annotation level: Document? Sentence?
Word?

e Selection method:

- Query-by-committee with several sample
selection metrics
e Average KL-divergence
e Maximum KL-divergence
e [-score

e Batch size: 1 ideal but impractical. 10? 507?
1007



Experiments

e BioNLP

- Corpus: developed for BioNLP 2004 shared task,
based on GENIA corpus

- Entities: DNA, RNA, cell-line, cell-type, protein

- Experiments: 10 fold cross validation used to
tune AL parameters for real experiments

e AstroNER

- Experiments: 20 rounds of annotation with active
sample selection



F-Score

BioNLP: Words vs. F-score
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F-Score

AstroNER: Words vs. F-score
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Time Monitoring

e Objective:
- Progress towards NL engineering (cost/time-
aware)

e Method:

- Web-based time tracking tool used to record how
time was spent

- Separation between shared (communication,
Infastructure) and method-specific time use

e Result:
- No dramatic cost differences between 3 methods
- Roughly 64 person days total cost (all methods)



Time Monitoring

Infrastructure

100 h
Active
Learning
130.5h

Communication/ : :

57.5h
Clustenng
57.5h

Co-Training
160.5 h
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