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1996 1997 1998 1999 2000 2001 2002
Biometrics 
company
(health 
monitor)
Boeing
(intrusion)
Masterfoods
(new product 
development)
Cellomics
(pro-teomics 
screen)
ABB (Circuit-
breaker 
supply chain)
SwissAir
(Flight delays)
3M (secret)
Washington 
Public 
Hospital 
System
(ER delays)
Unilever
(targeted 
marketing)

NASA (National 
Virtual 
Observatory)
NSF (astrostatistics
software)
DARPA (national 
disease monitor)
Masterfoods (bio-
chemistry)
Pfizer (High-
throughput screen) 
Caterpillar Inc.
(Self-optimizing 
Engines)
Beverage 
Company
(Ingredients/Manuf
acturing/Marketing/
Sales Bayes Net)
Transform Pharma
(massive 
autonomous 
experiment design) 
Census Bureau
(privacy protection)
Psychogenics Inc: 
Effects of 
psychotropic drugs 
on rats

2003
M&M 
Mars 
Line 
control
Adrenali
ne
(NOX 
mini-
malizati
on)

Kodak
(Image 
sta-
bilizatio
n)
Digital 
Equipm
ent
(pregna
n-cy 
monit-
oring)

M&M 
Mars
(manufa
c-turing)
NASA/
NSF
(Astrop
hysics 
mining)
3M:
Textile 
tension 
control

Caterpillar
(Spare 
parts)
US Army
(biotoxin 
detection)
M&M 
Mars:
Schedulin
g with 
uncer-
tainty
3M
(Adhesive 
design)

DigitalMC
(Music 
tastes)
Caterpillar
(emissions)
SmartMoney
(anomalies)
Unilever
(Brand 
Management
)
Phillips 
Petroleum
(work-force 
optimization)
Cellomics
(screened 
anomaly 
detection)

NSF (astrostatistics
software)
Masterfoods (bio-
chemistry)
State of PA (National 
Disease Monitor [with 
Mike Wagner of U. Pitt])
State of PA (Anti 
Cancer [collaboration 
with CMU Biology]
DARPA (detecting 
patterns in links)
Other Government 
Departments
(identifying dangerous 
people, potential 
collaborators, and 
aliases)
Other Government 
Departments (detecting 
a class of clusters)
Other Pharma
Research Co. Life 
Science specific data 
mining
United States 
Department of 
Agriculture: Early 
warning system for food 
terrorism
NSF: Biosurveillance 
Algorithms

Auton/SPR 
Deployments



Biomedical Security (with Mike 
Wagner, University of Pittsburgh)

Big Noisy Data-
base of Links

There must be 
something useful 
here… but I’m 

drowning in noise

Analyst

Record # 456621:

Doe and Smith 
were booked in 
the same hotel 
on 3/6/93

Big Noisy Data-
base of Links

This is more 
useful 

objective 
information

TGAT

Potential coll-aborators
of Doe:

The pattern of travel 
among the group 
consisting of (Doe, 
Smith, Jones, Moore) 
during 93-96 can’t be 
explained by 
coincidence

Our 5 biggest 
applications in 2004 Autonomous self-

tweaking engines

Drug Screening

Intelligence DataBig Astrophysics Automated Science



Cached Sufficient Statistics
Kd-trees and Ball Trees
K-nearest neighbor with ball trees

Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs

Very fast kernel-based statistics
n-point computations
clustering
non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics



Data Analysis: The old days

Size Ellipticity Color

23 0.96 Red

33 0.55 Red

36 Green
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48
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Data Analysis: The new days

• •

Question

Seventeen 
months later…

Answer
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Kd-trees

• Friedman, Bentley and Finkel, 1977



Kd-trees

BSPs
Fast LOESS

Variable Resolution 
Reinforcement 

Learning
Doom

• Cleveland and Delvin, 1988

• Simons, Van Brussel, De 
Schutter and Verhaert, 1982

• Chapman and Kaelbling, 
1991

:



Kd-trees

Multipole

Greengard

BSPs
Fast LOESS

Variable Resolution 
Reinforcement 

Learning
DoomWSPDs

• Barnes and Hut, 1986

• Callahan and Kosaraju, 1993



Single Kernel 
Regressions

• Kan Deng
Kd-trees

Multipole

Greengard

BSPs
Fast LOESS

Variable Resolution 
Reinforcement 

Learning

Cached 
Counts

K-means

Doom

Single Kernel Density 
Estimations

WSPDs

• Dan Pelleg



Kd-trees

Multipole

Greengard

BSPs

Single Kernel 
Regressions

Fast LWR
Mahalonobis

Maximization

Fast LOESS

Variable Resolution 
Reinforcement 

Learning

Cached 
Counts

K-means

Doom

Cached 
Sufficient 
Statistics Single Kernel Density 

Estimations

Mixture Loglike

Mixture EM steps

WSPDs

• Moore, 1998• Moore, 1998• Moore, 1998



Kd-trees

Multipole

Greengard

BSPs

Single Kernel 
Regressions

Fast LWR Dual-tree 
cached stats

2-point 
correlation

Mahalonobis
Maximization

Fast LOESS

Variable Resolution 
Reinforcement 

Learning

Cached 
Counts

K-means

Doom

Cached 
Sufficient 
Statistics Single Kernel Density 

Estimations

Pipelined Kernel 
Operations

n-point 
correlation

Multi-tree
Mixture Loglike

Mixture EM steps

WSPDs

• Alex Gray



Kd-trees

Multipole

Greengard

BSPs

Single Kernel 
Regressions

Fast LWR Dual-tree 
cached stats

2-point 
correlation

Non-parametric cluster 
/ clutter / cluster 

counts

Mahalonobis
Maximization

Fast LOESS

Variable Resolution 
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K-means
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Kd-trees

Multipole

Greengard

BSPs

Single Kernel 
Regressions

Fast LWR Dual-tree 
cached stats

2-point 
correlation

Non-parametric cluster 
/ clutter / cluster 

counts

Mahalonobis
Maximization

Metric treesFast LOESS

Variable Resolution 
Reinforcement 

Learning

Cached 
Counts

K-means
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• Alex Gray

• Ting Liu
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• Jeremy Kubica



Cached Sufficient Statistics
Ball Trees (= Metric Trees)
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Very fast non-parametric classification
skewed binary outputs
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Structure of kdtrees

In memory…

I contain 300 points 
and have center of 
mass (55,52) and 

covariance…
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Structure of of kdtrees

In memory…

I contain 130 points 
and have center of 
mass (23,49) and 

covariance…

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1965124
124754

I contain 170 points 
and have center of 
mass (73,58) and 

covariance…

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
188524

24654



Structure of of kdtrees

In memory…
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<more levels here>
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A Set of Points 
in a metric 

space



Ball Tree root 
node



A Ball Tree



A Ball Tree



A Ball Tree



A Ball Tree



A Ball Tree

•J. Uhlmann, 1991

•S. Omohundro, NIPS 1991



Ball-trees:  properties

Let Q be any query point and let x be a 
point inside ball B

|x-Q| ≥ |Q - B.center| - B.radius
|x-Q| ≤ |Q - B.center| + B.radius

Q 

B.center

x 
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Q

Goal: Find out 
the 2-nearest 
neighbors of Q. 

•J. Uhlmann, 1991

•S. Omohundro, NIPS 1991
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Q
We’ve hit a leaf 

node, so we 
explicitly look at the 
points in the node



Q
Two nearest 

neighbors found so 
far are in pink

(remember we have 
yet to search the 

blue balls)
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KNS2
• Assume binary output
• Assume positive class is much less frequent 

than negative class
• Assume we want more than a 

“positive/negative” prediction: we want to 
know exactly how many of the K-NN are 
from the +ve class

KNS2 does this without finding the K-NN



Assume we have a set 
of data points.

Some are +ve points 
(denoted    )

The large majority are 
–ve points (denoted   )



Q

Assume we have a set 
of data points.

Some are +ve points 
(denoted    )

The vast majority are –
ve points (denoted    )

Preprocessing: Put all 
your +ve points in a 

small ball tree

Preprocessing: Put all 
your -ve points in a 

separate large ball tree



Q

Goal: Find out 
how many of 
the 5-nearest 
neighbors of Q 
are positive.



Q

Step One: Find 
the five nearest 
+ve points using 
KNS1.

We’re assuming there 
are far fewer +ves
than –ves so this is 
not the dominant cost.



Q

Q

Step 2: Search the 
ball-tree of –ve
points starting at 
the root.
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No prune.

Ball is leaf 
so explore 
its points

Q
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I contain exactly one point closer 
than the 1st closest +ve point (says 

the Ball)

No prune.

Ball is leaf 
so explore 
its points

Q 1
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Return and 
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sibling

Q 1
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I can’t possibly 
have any 

interesting points

Return and 
try other 
sibling

Q 1
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I can’t possibly 
have any 

interesting points

Q 1



We’re done

Q

Q 1



Q

Q 1

We’re done
There’s one –ve point 
closer than the closest 
+ve point.

There are more than 3 
–ve points closer than 
the 2nd closest +ve
point.

=> Exactly 1 of the 5 
nearest neighbors is 
+ve



Balls visited

Q

Q 1



Another 
example

Q



Experimental results
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Data Structures for Fast K-
means

The Auton Lab

Carnegie Mellon University

www.autonlab.org

http://www.autonlab.org/autonweb/index.jsp












Some Bio 
Assay data



GMM 
clustering 

of the 
assay data



Resulting 
Density 

Estimator



Three 
classes of 
assay
(each learned with it’s 
own mixture model)
(Sorry, this will again be semi-
useless in black and white)



Resulting 
Bayes 
Classifier



Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness

Yellow means 
anomalous

Cyan means 
ambiguous

[Moore, 1999], [Pellg and Moore, 2002]



Cached Sufficient Statistics
Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees

Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs

Very fast kernel-based statistics
n-point computations
clustering
non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics



Detecting 
overdensities



Detecting 
overdensities



Finding the 
overdense
regions



Finding the 
overdense
regions

• Many possible approaches

Examples:

• Dasgupta and Raftery, 1998

• Byers and Raftery, 1998

• Cuevas et al, 2000

• Reichart et al, 1999

• All share the same computational 
primitives 
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Finding the 
overdense
regions

• Step One:
Identify the high 
density points

• Step Two:
Delete the rest

• Step Three:
Find connected 
components

CFF assumes: A and B are in same 
component if there’s a path between 
them with all small steps

CFF assumes:
Kernel Density 
EstimationCan be done efficiently 

with 2-point style 
search 

Can be done 
efficiently with 
2-point-style 
search plus an 
extra trick

A

C

B



Results 4-dimensional Sloan 
Astrophysics color-space data

[Wong and Moore, 2002]



Results 4-dimensional Sloan 
Astrophysics color-space data
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Active Learning of Anomalies

Set of 
Records

Ask expert 
to classify

Spot “important” 
records

Build Model from 
data and labels

Run all data 
through model

Dan Pelleg
[Pelleg, Moore and Connolly 2004]



Anomaly GUI



Anomaly Performance
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GMorph: Fast Galaxy Morphology

• How do you perform 107 large 
nonlinear optimizations in practical 
time?

• How do you avoid local optima
• Idea: Pre-cache a “library” of solutions. 

Use efficient nearest neighbor to 
match new problems to library as 
seeds.

• Early tests bring galaxy morphology 
fits down from minutes to sub-seconds

Brigham 
Anderson

[Anderson, Bernardi, Connolly, Moore, Nichol, 2004]
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Other Relevant Auton Topics
Bayesian Networks

D

W
C

S

G
H

[Moore and Lee, 1998], [Moore and Wong, 2003]
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“What’s strange about recent events?”

Weng-Keen 
Wong

[Wong, Moore, Cooper and Wagner 2003]
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“What’s strange about recent events?”

Spatial Scan Statistics

Daniel Neill

[Neill, Moore and Wagner, 2004]



Other Relevant Auton Topics
Bayesian Networks
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“What’s strange about recent events?”
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Conclusions

• Geometry can help tractability of 
Massive Statistical Data Analysis

• Cached sufficient statistics are one 
approach

• Papers, tutorials, software, examples:

www.autonlab.org
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