Efficient Statistical Learning from "Big Science" Data

Andrew Moore Auton Lab

Andrew Connolly U. Pittsburgh

Jeremy Kubica Auton Lab

Ting Liu Auton Lab

The Auton Lab School of Computer Science Carnegie Mellon University www.autonlab.org

The Auton Lab

Faculty:	Andrew Moore (Prof), Jeff Schneider (Research Scientist), Artur Dubrawski (Systems Scientist)		
Postdoctoral Fellows:	Brigham Anderson, Alexander Gray, Paul Komarek, Dan Pelleg		
Graduate Students:	Brent Bryan, Kaustav Das, Khalid El-Arini, Anna Goldenberg, Jeremy Kubica, Ting Liu, Daniel Neill, Sajid Siddiqi, Purna Sarkar, Ajit Singh, Weng-Keen Wong		
Head of Software Development:	Jeanie Komarek		
Programmers:	Patrick Choi, Adam Goode, Pat Gunn, Joey Liang, John Ostlund, Robin Sabhnani, Rahul Sankathar		
Executive Assistant:	Kristen Schrauder		
Head of Sys. Admin:	Jacob Joseph		
Undergraduate and Masters Interns:	Kenny Daniel, Sandy Hsu, Dongryeol Lee, Jennifer Lee, Avilay Parekh, Chris Rotella, Jonathan Terleski		
Recent Alumni:	Drew Bagnell (RI faculty), Scott Davies (Google), David Cohn (Google), Geoff Gordon (CMU), Paul Hsiung (USC), Marina Meila (U. Washington), Remi Munos (Ecole Polytechnique), Malcolm Strens (Qinetiq)		

Current Sponsors

- National Science Foundation (NSF)
- NASA
- Defense Advanced Research Projects Agency (DARPA)
- Department of Homeland Security (DHS)
- Homeland Security Advanced Research Projects Agency (HSARPA)
- United States Department of Agriculture (USDA)
- State of Pennsylvania
- Pfizer Corporation
- Caterpillar Corporation
- British Petroleum
- Psychogenics Corporation
- Transform Pharmaceuticals
- Health Canada

Collaborators...

Alex Gray

Daniel Neill

Paul Komarek

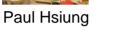
j Liu

Kan Deng

Jeremy Kubica

Drew

Bagnell



Brigham Anderson

Scott Davies

Weng-Keen Wong

Sajid

Siddiqi

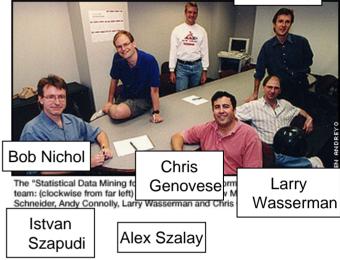
Anna

Goldenberg

Ajit Singh

Jeff Schneider

Dan Pelleg

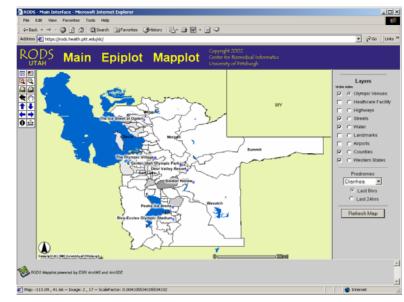


1996	1997	1998	1999	2000	2001	2002	2003
M&M Mars Line control Adrenali ne (NOX mini- malizati on)	Kodak (Image sta- bilizatio n) Digital Equipm ent (pregna n-cy monit- oring)	M&M Mars (manufa c-turing) NASA/ NSF (Astrop hysics mining) 3M: Textile tension control	Caterpillar (Spare parts) US Army (biotoxin detection) M&M Mars: Schedulin g with uncer- tainty 3M (Adhesive design)	DigitalMC (Music tastes) Caterpillar (emissions) SmartMoney (anomalies) Unilever (Brand Management) Phillips Petroleum (work-force optimization) Cellomics (screened anomaly detection)	Biometrics company (health monitor) Boeing (intrusion) Masterfoods (new product development) Cellomics (pro-teomics screen) ABB (Circuit- breaker supply chain) SwissAir (Flight delays) 3M (secret) Washington Public Hospital System (ER delays) Unilever (targeted marketing)	NASA (National Virtual Observatory) NSF (astrostatistics software) DARPA (national disease monitor) Masterfoods (bio- chemistry) Pfizer (High- throughput screen) Caterpillar Inc. (Self-optimizing Engines) Beverage Company (Ingredients/Manuf acturing/Marketing/ Sales Bayes Net) Transform Pharma (massive autonomous experiment design) Census Bureau (privacy protection) Psychogenics Inc: Effects of psychotropic drugs on rats	NSF (astrostatistics software) Masterfoods (bio- chemistry) State of PA (National Disease Monitor [with Mike Wagner of U. Pitt]) State of PA (Anti Cancer [collaboration with CMU Biology] DARPA (detecting patterns in links) Other Government Departments (identifying dangerous people, potential collaborators, and aliases) Other Government Departments (detecting a class of clusters) Other Pharma Research Co. Life Science specific data mining United States Department of Agriculture: Early warning system for food terrorism NSF: Biosurveillance Algorithms

Our 5 biggest applications in 2004

Drug Screening

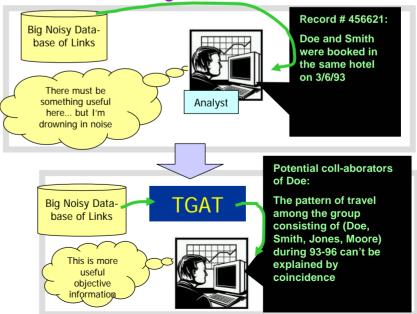
Biomedical Security (with Mike Wagner, University of Pittsburgh)



Autonomous selftweaking engines

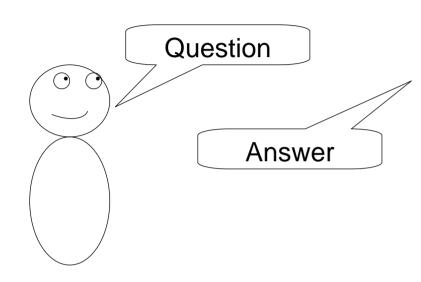
Big Astrophysics Automated Science

Intelligence Data



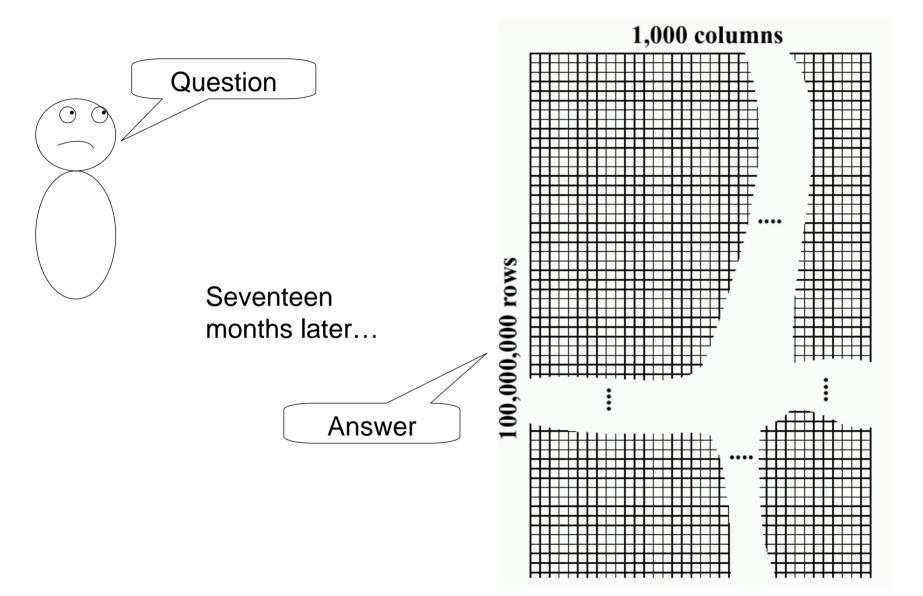
Cached Sufficient Statistics Kd-trees and Ball Trees K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

Data Analysis: The old days

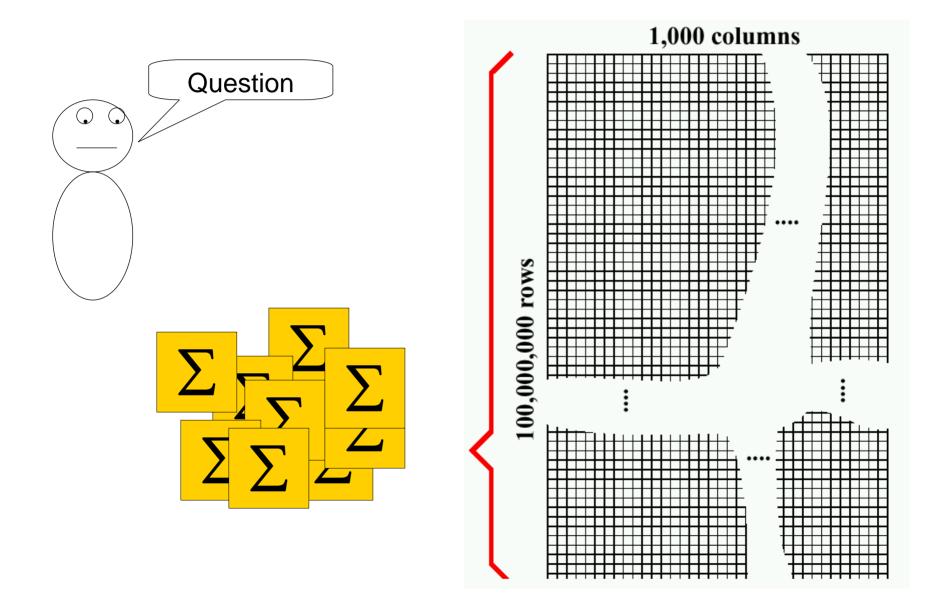


Size	Ellipticity	Color
23	0.96	Red
33	0.55	Red
36		Green
40		
20		
48		

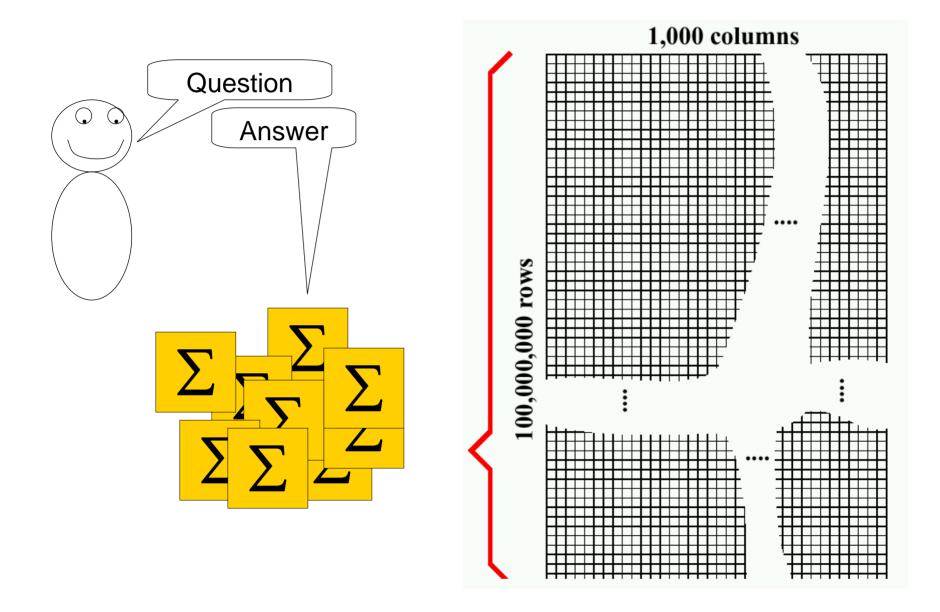
Data Analysis: The new days

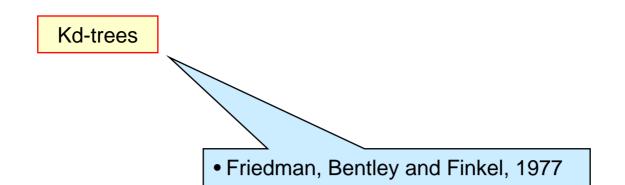


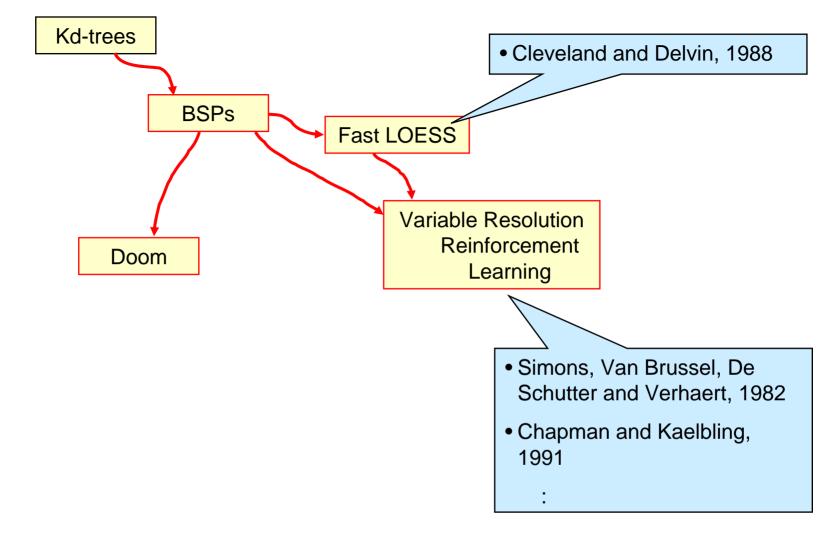
Cached Sufficient Statistics

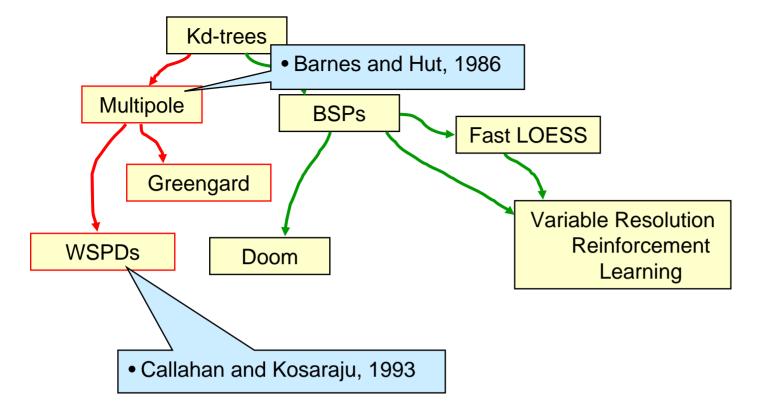


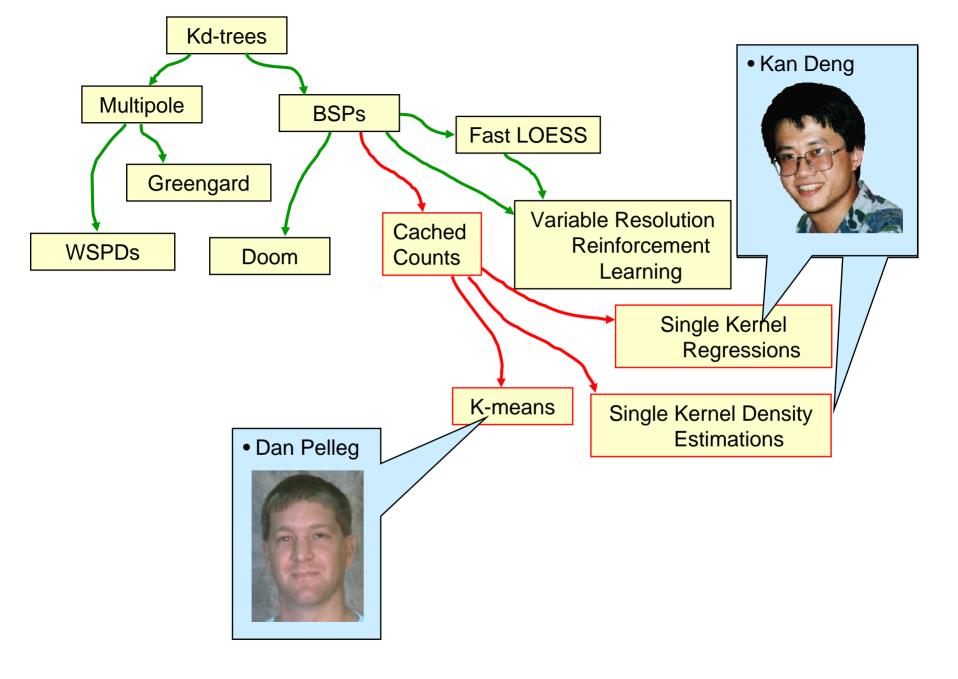
Cached Sufficient Statistics

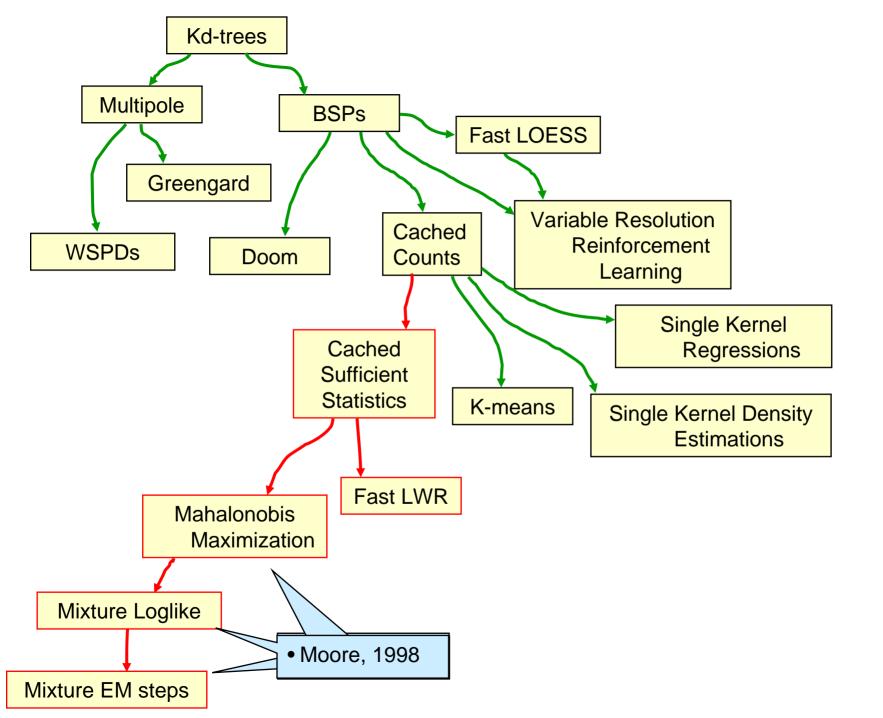


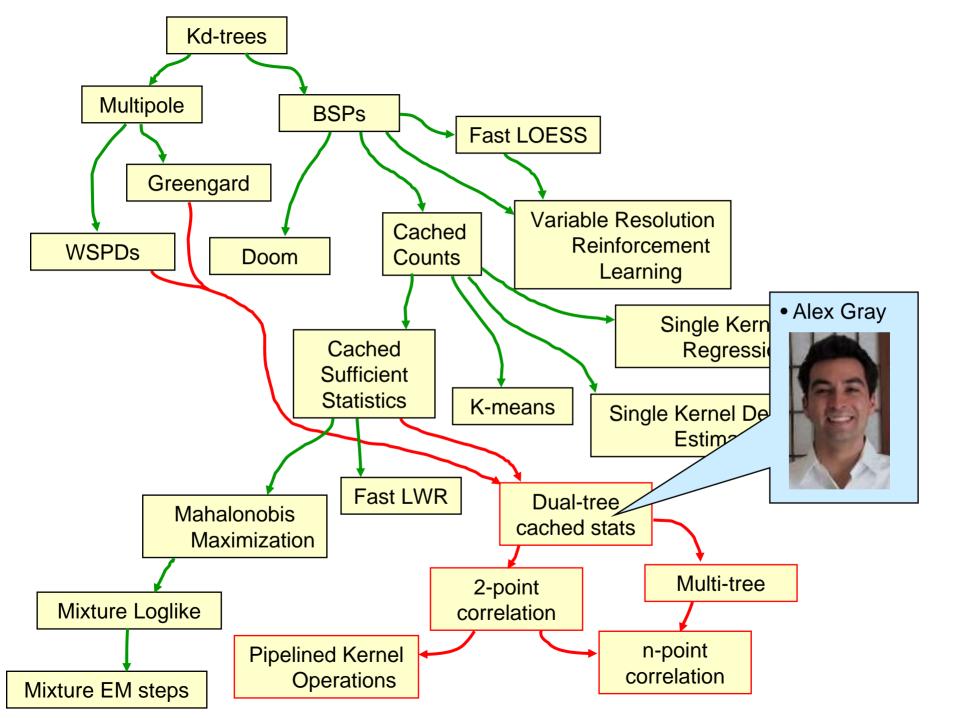


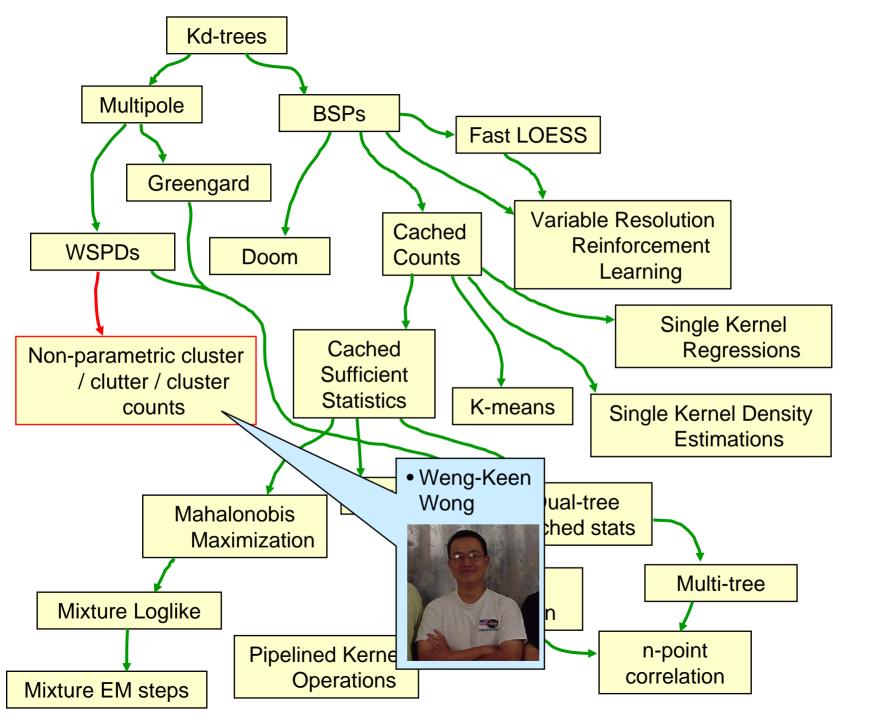


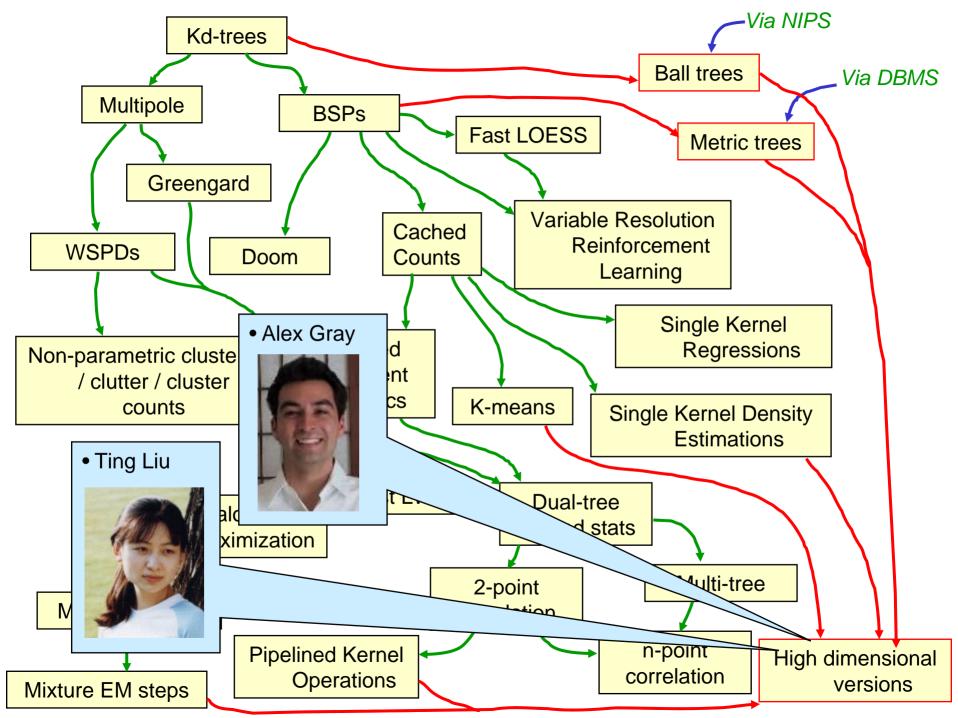


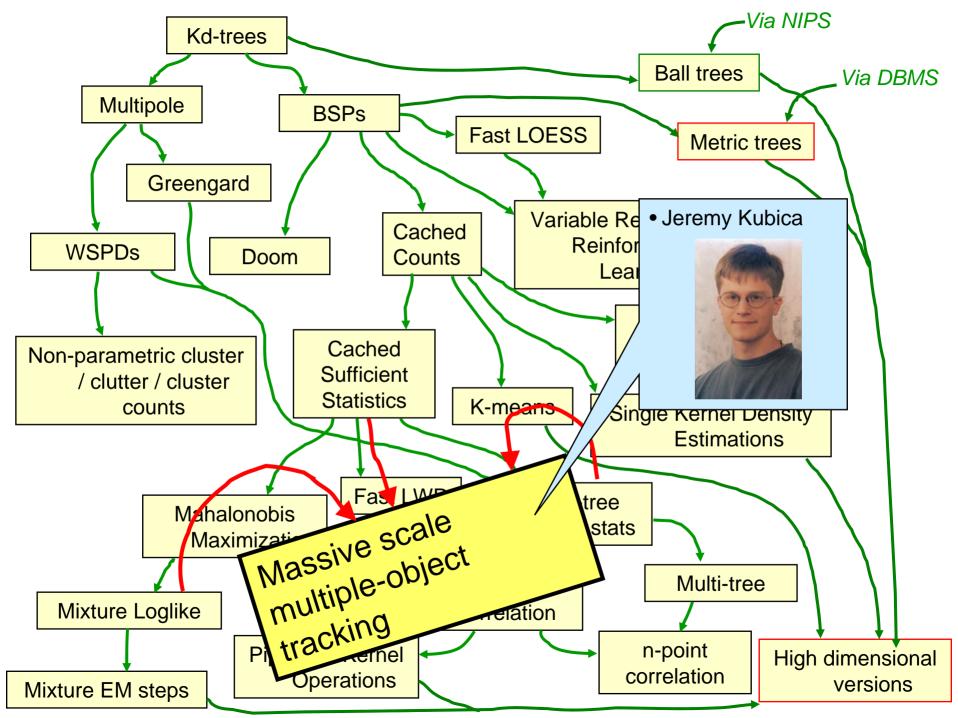




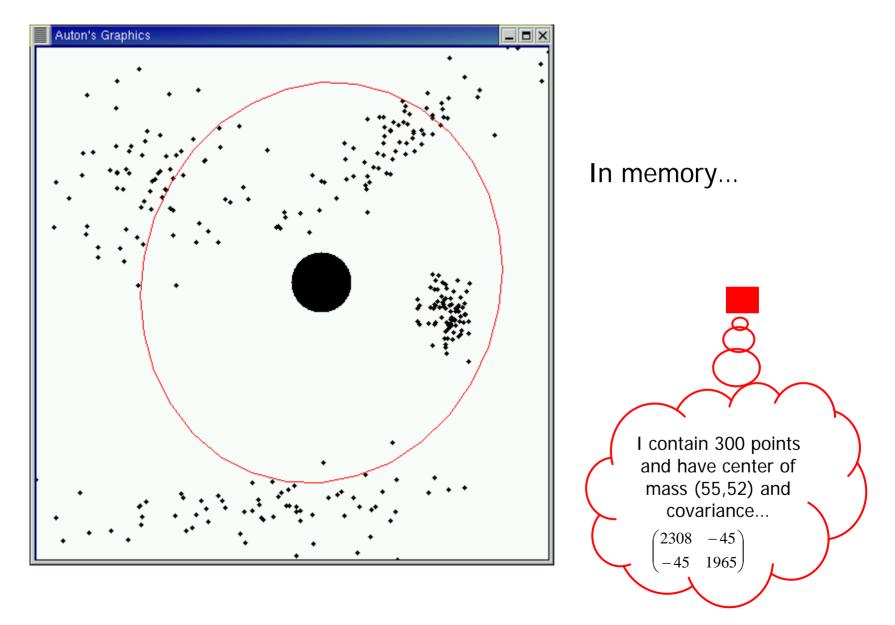


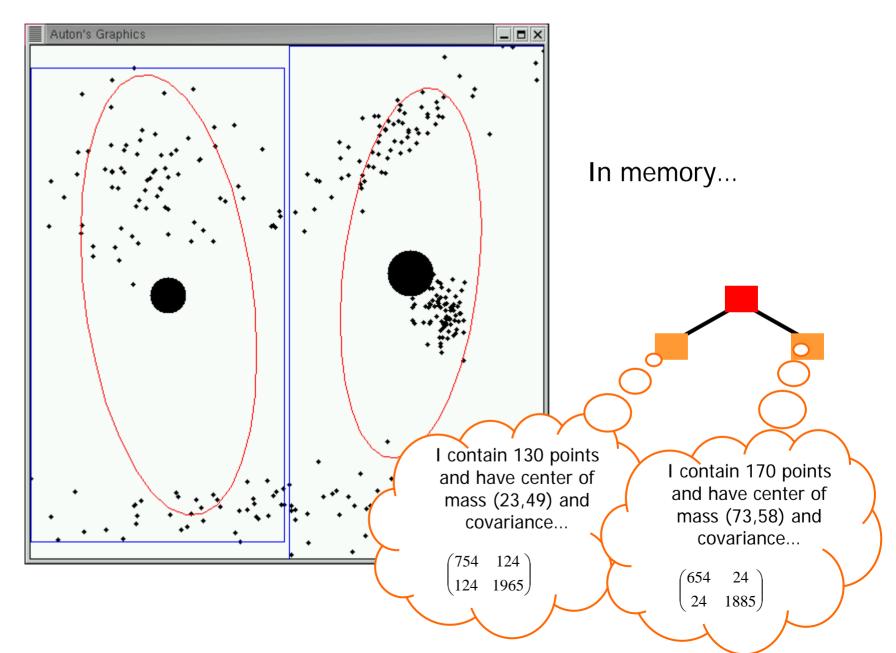


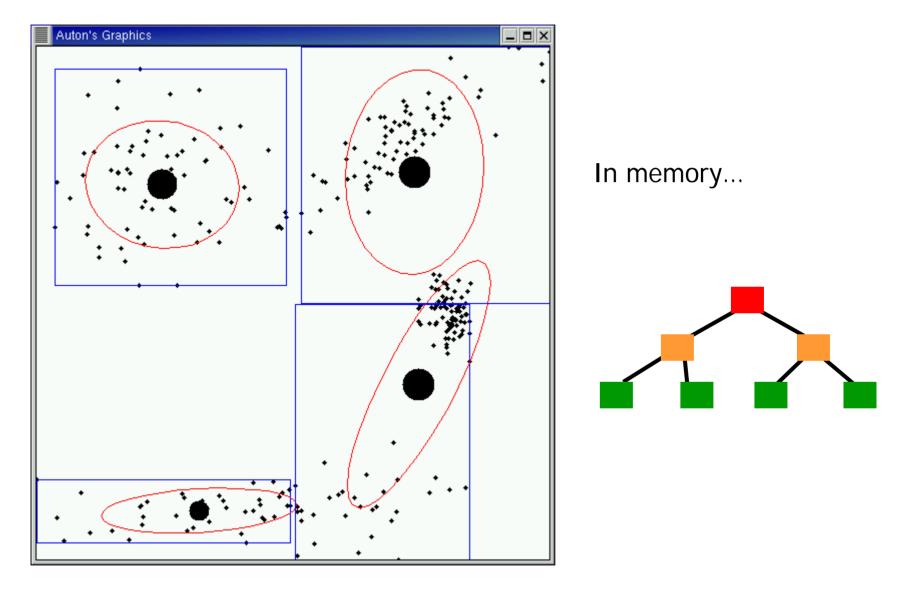


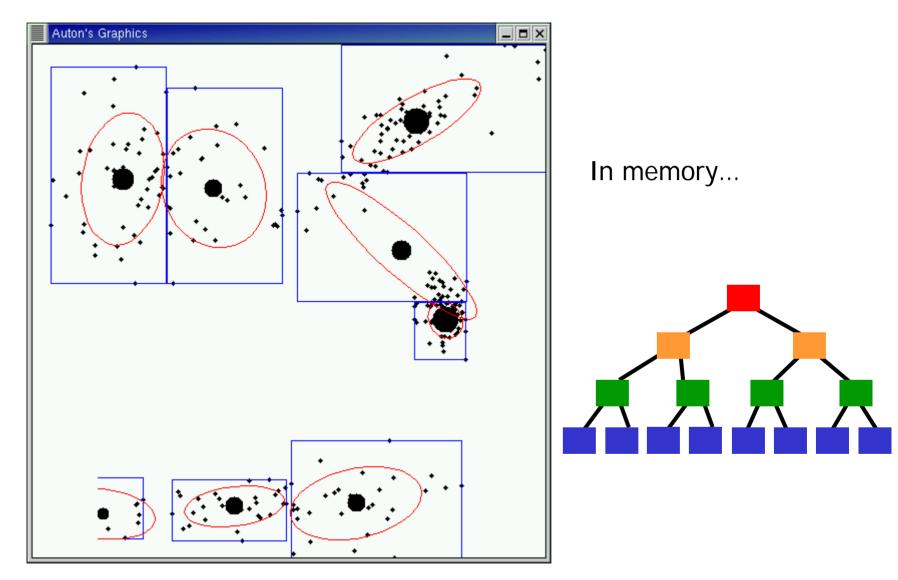


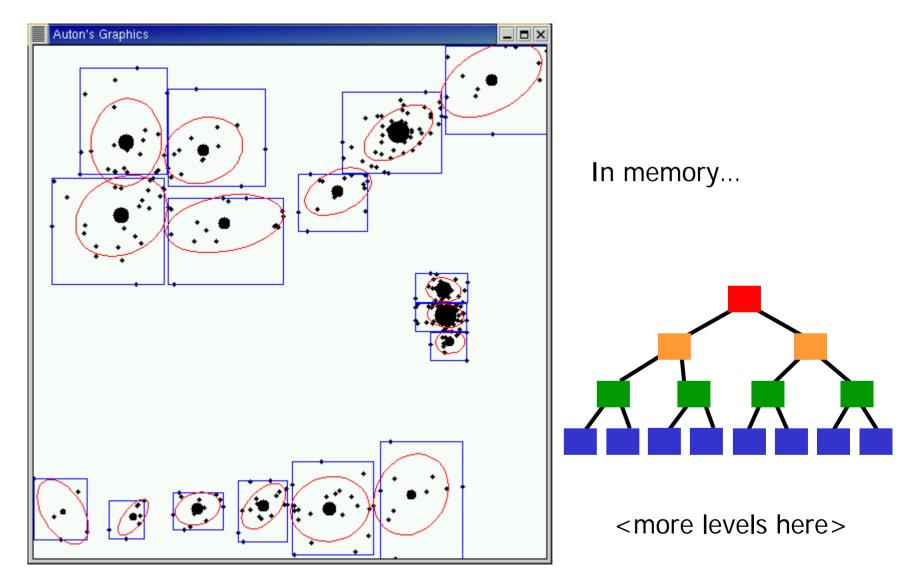
Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

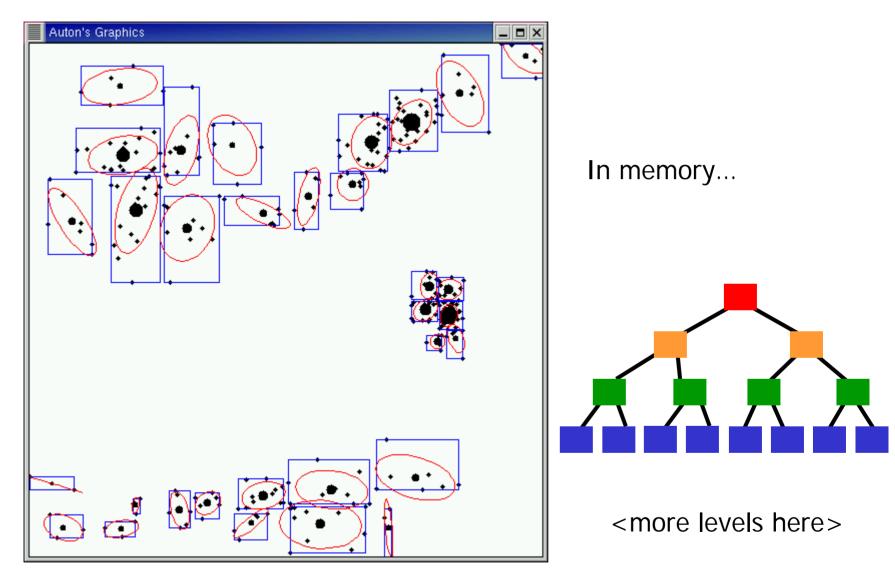




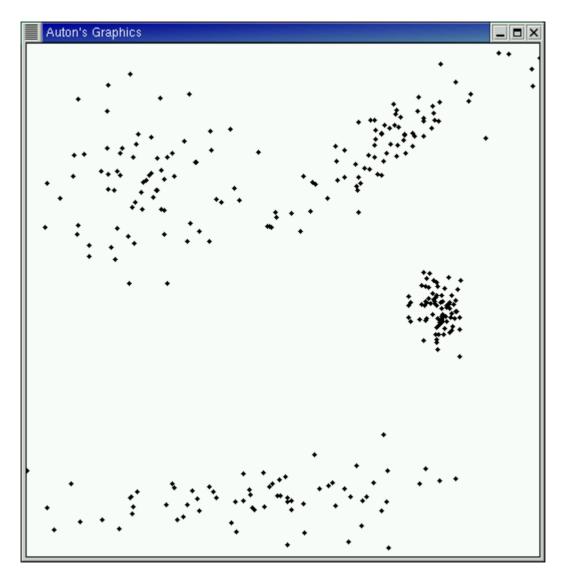


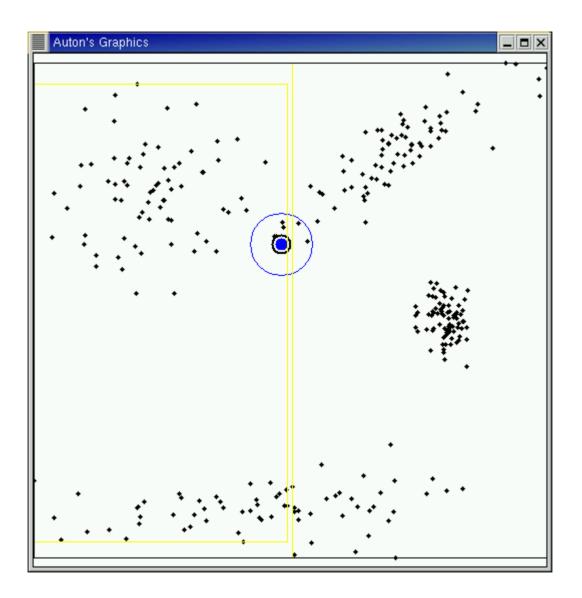


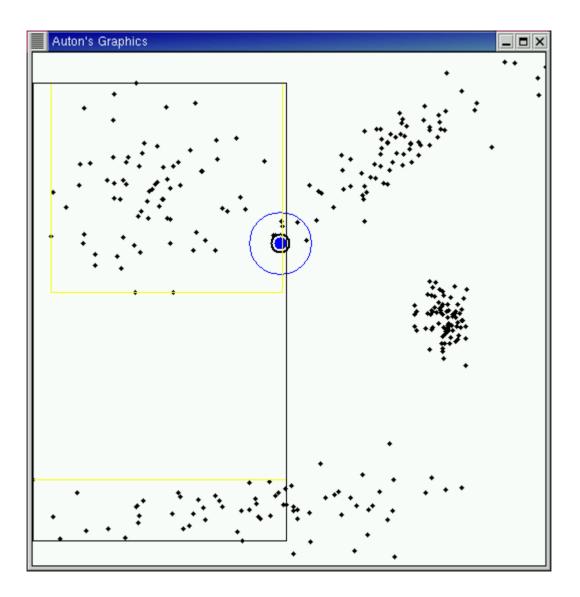


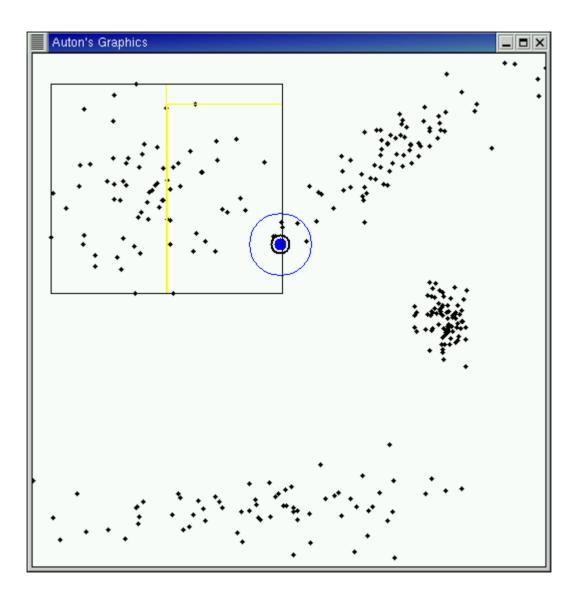


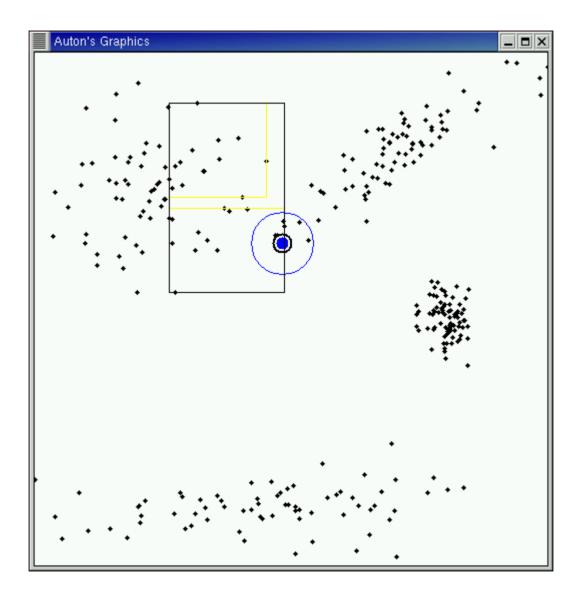
Range Search

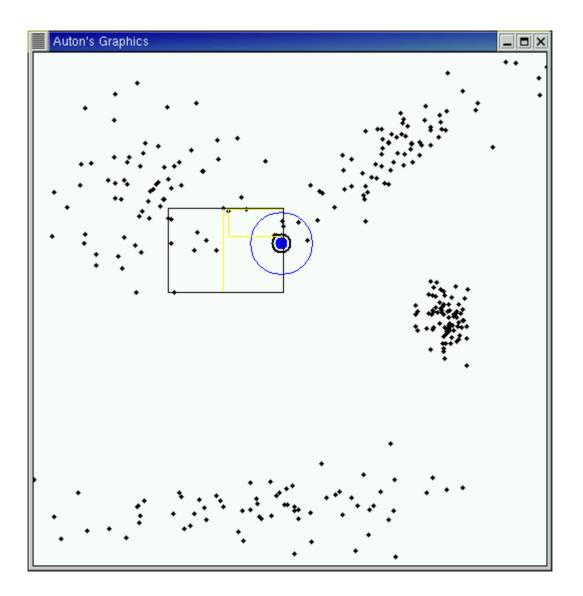


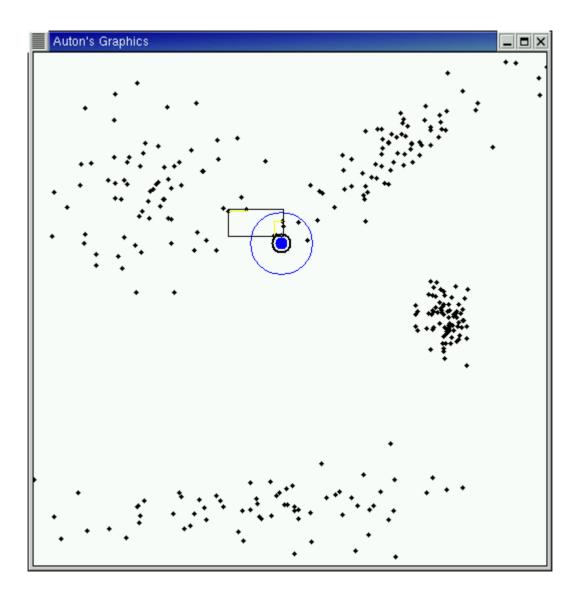


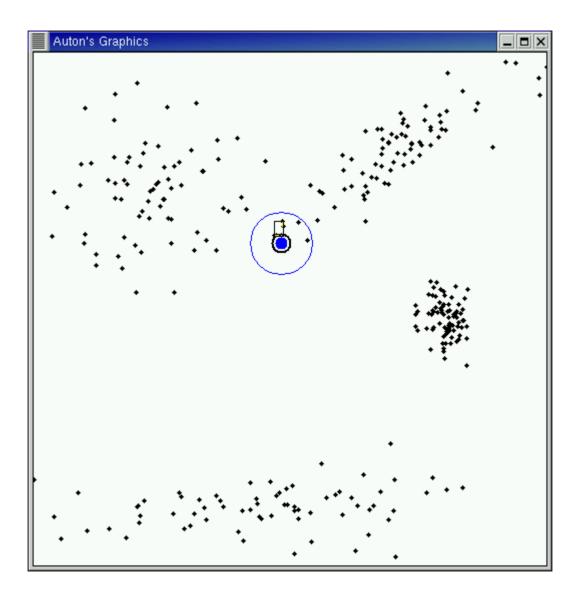


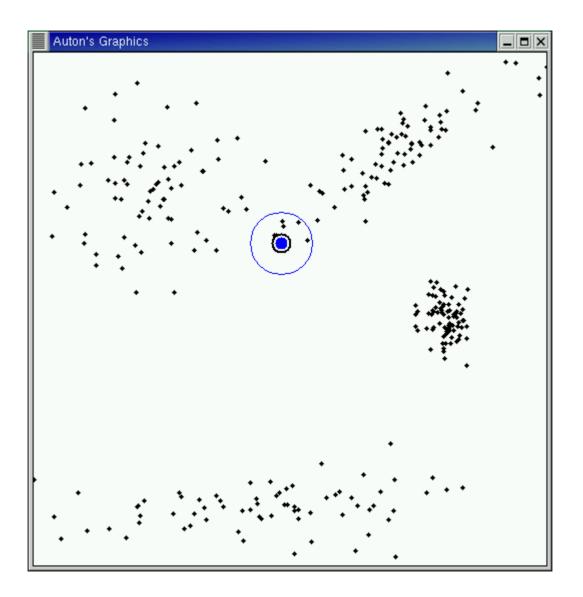


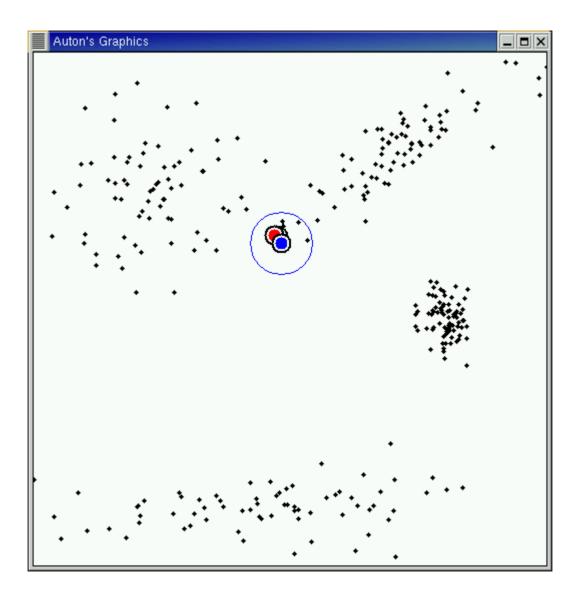


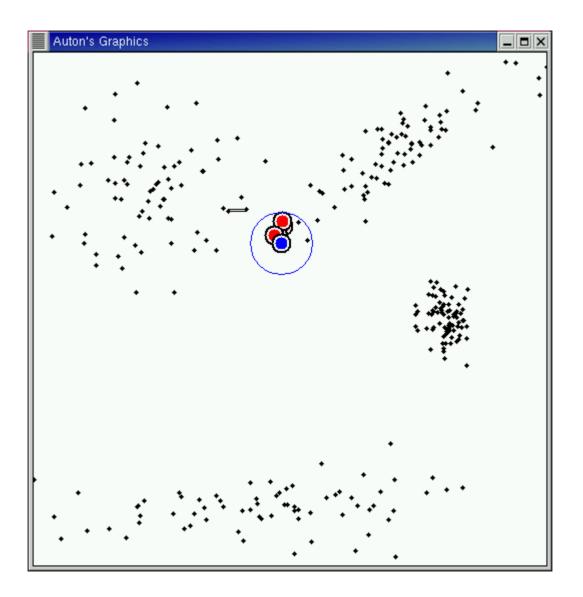


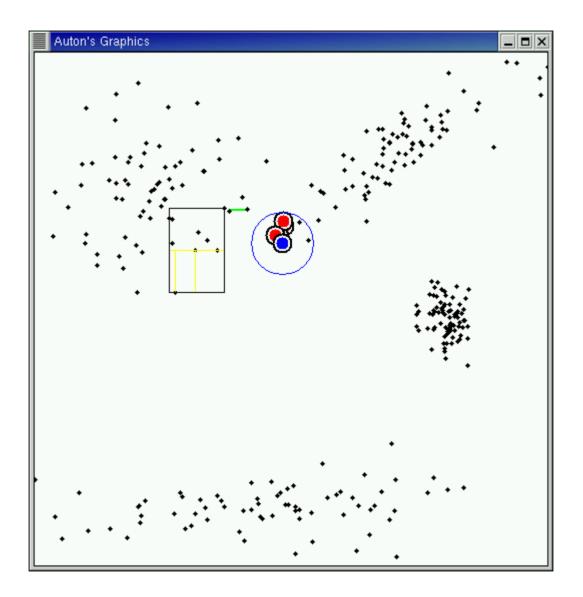


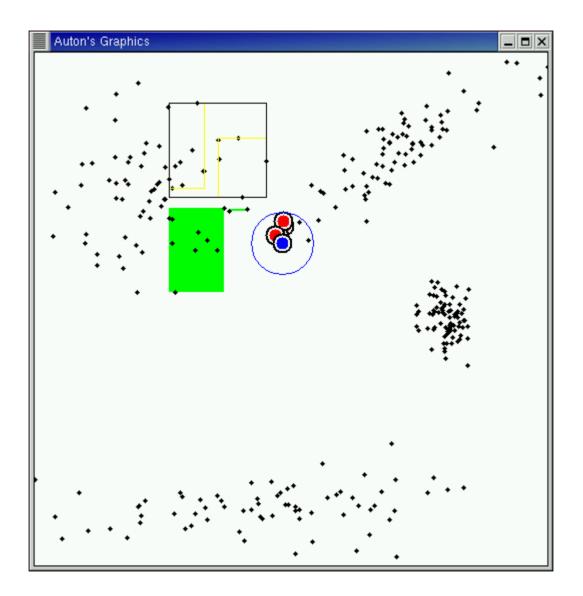


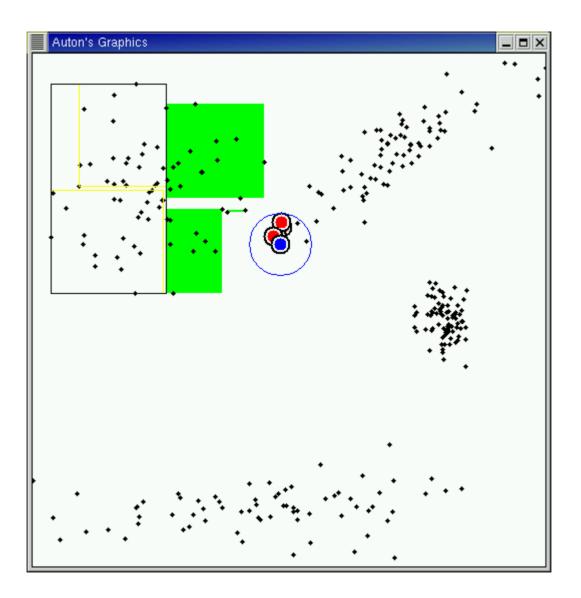


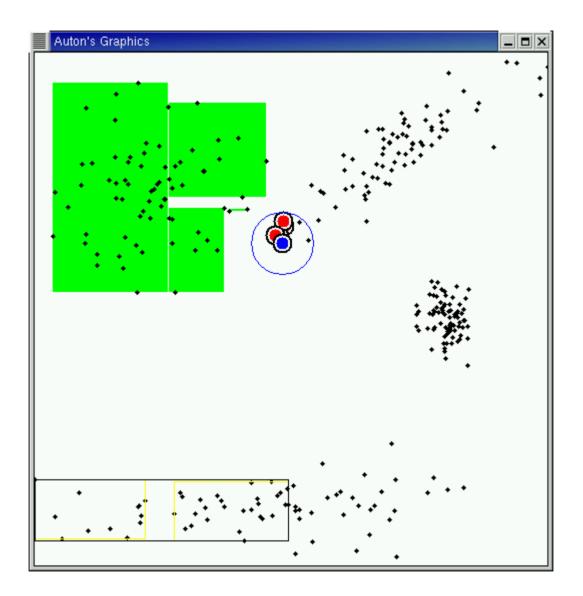


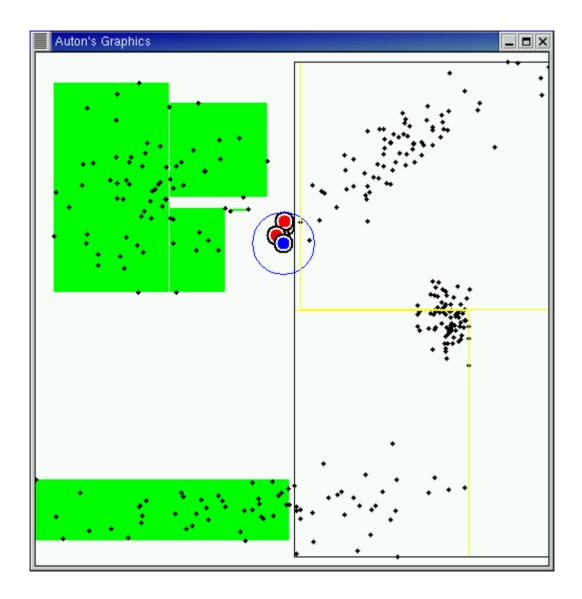


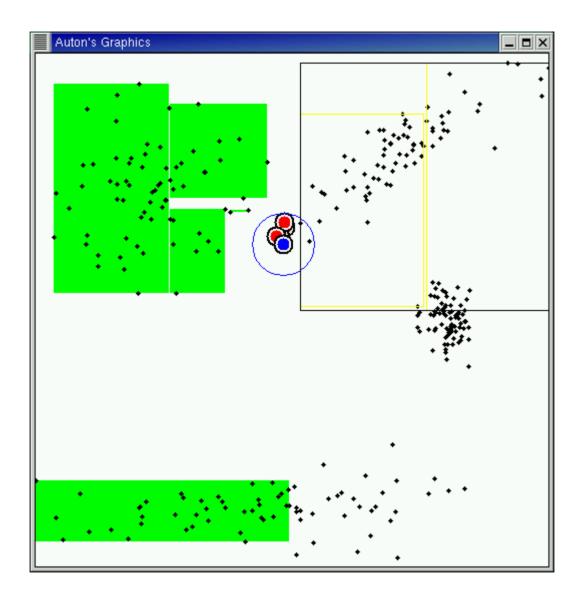


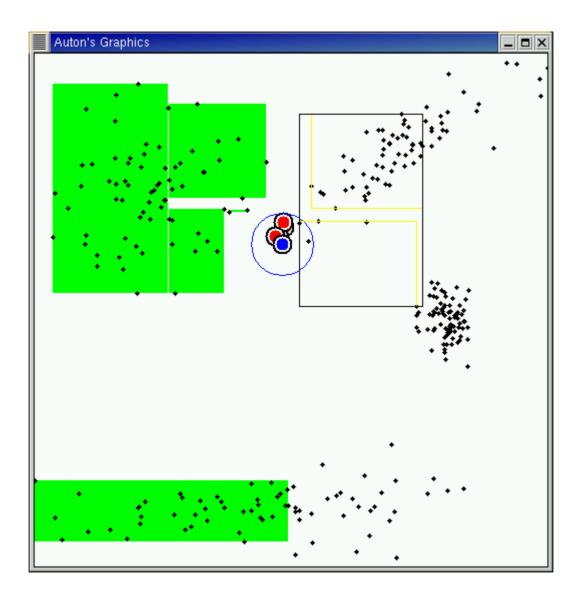


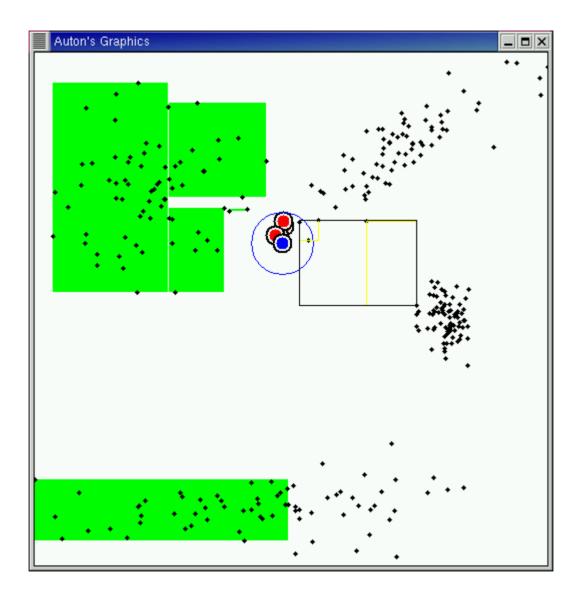


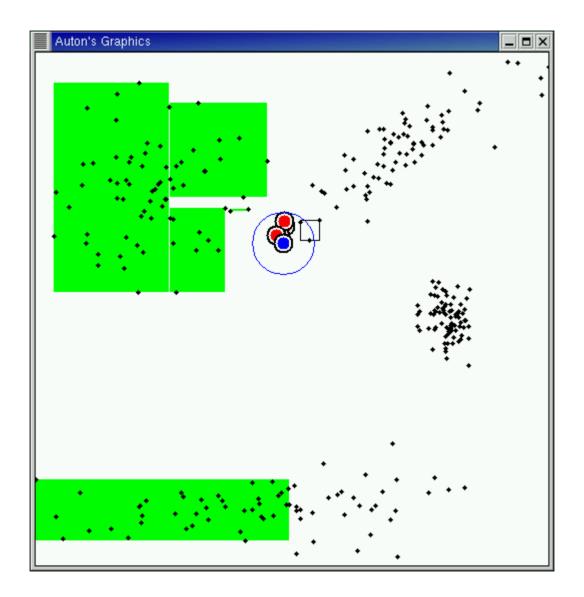


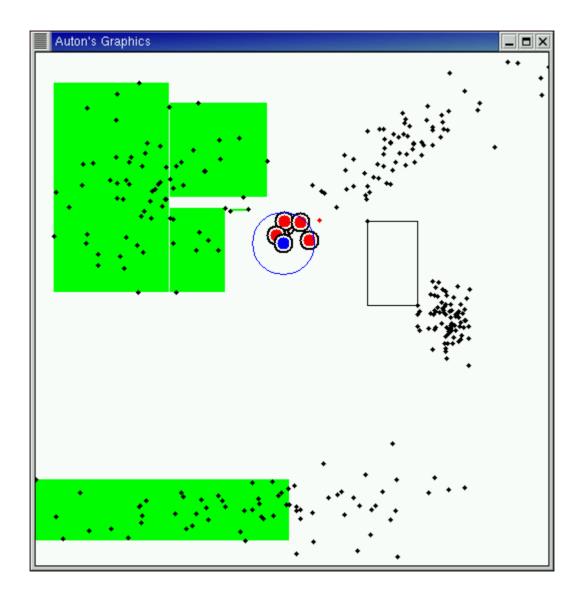


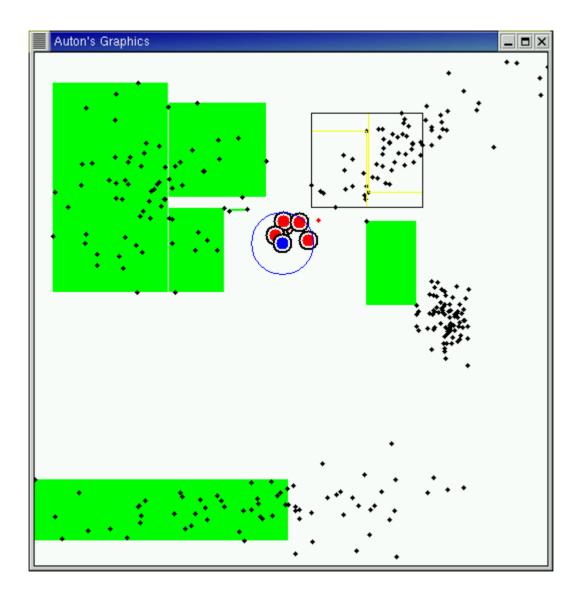


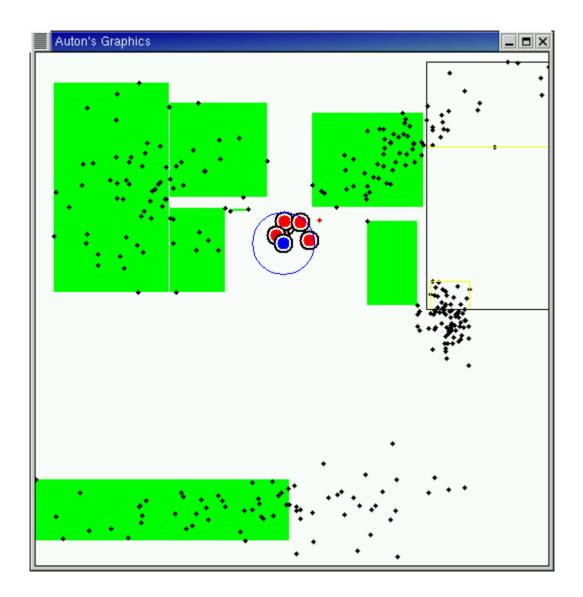


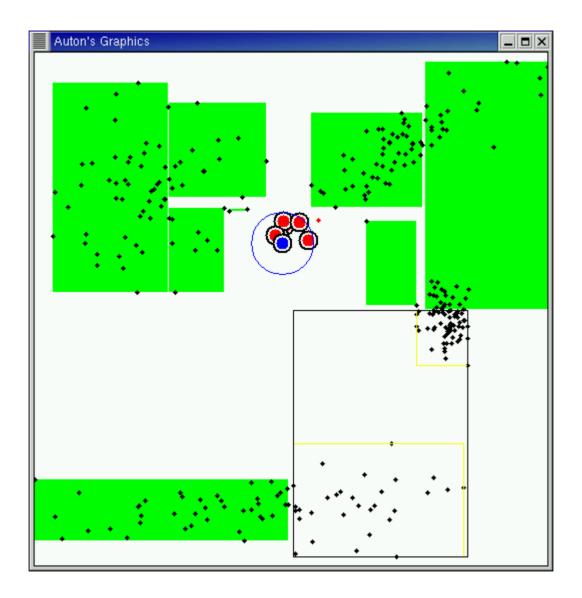


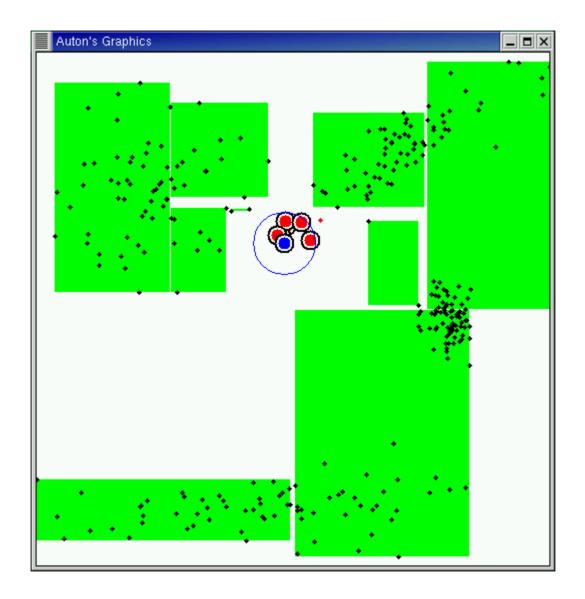


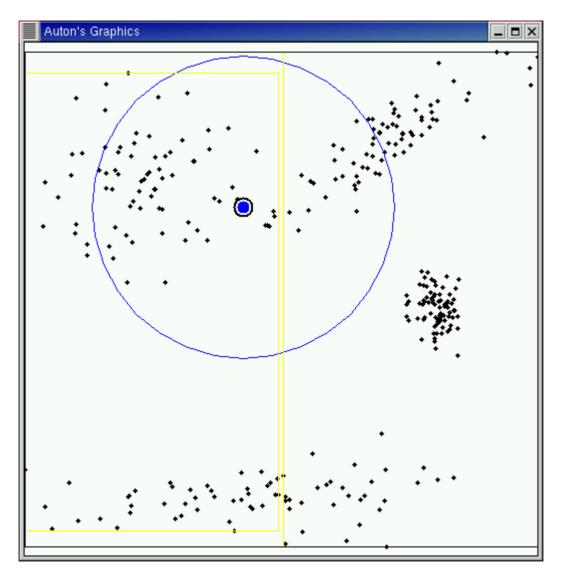


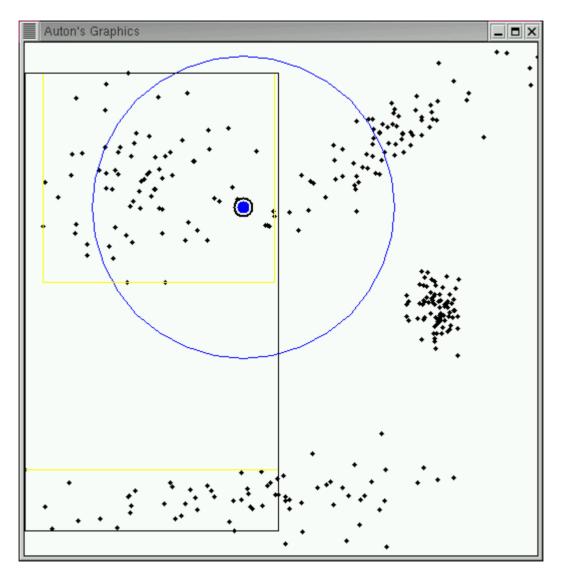


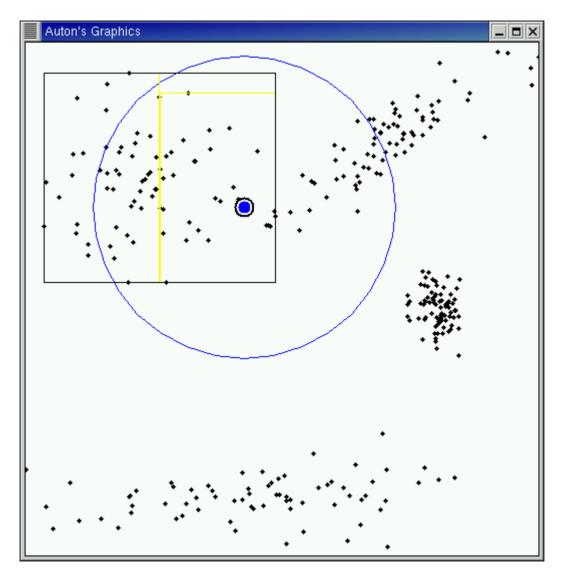


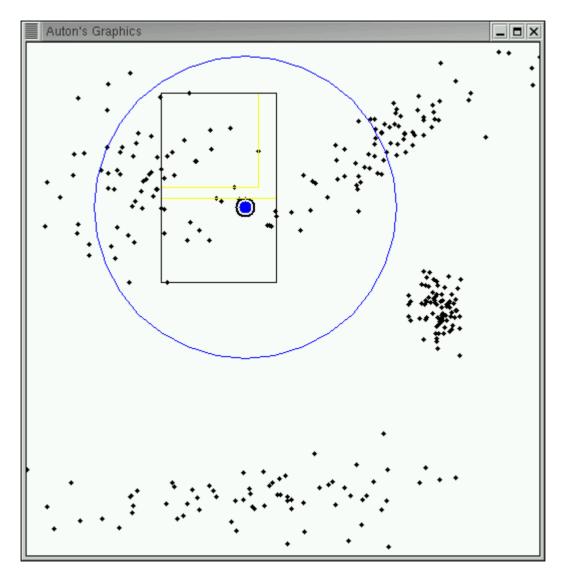


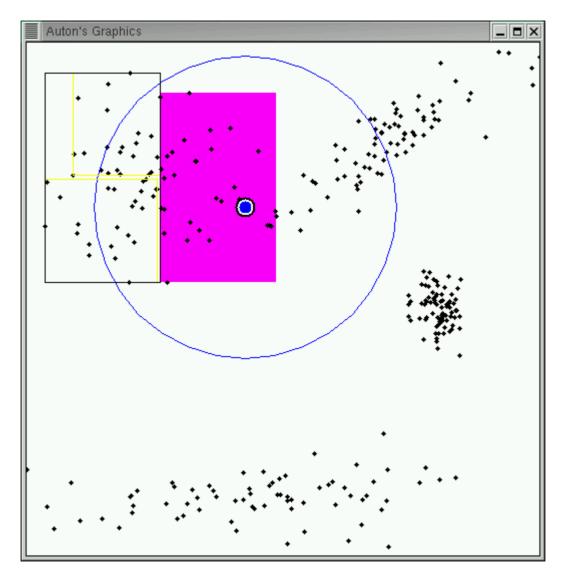


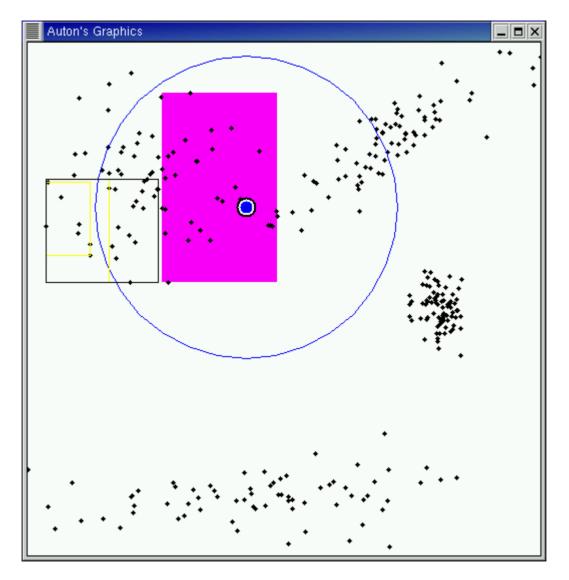


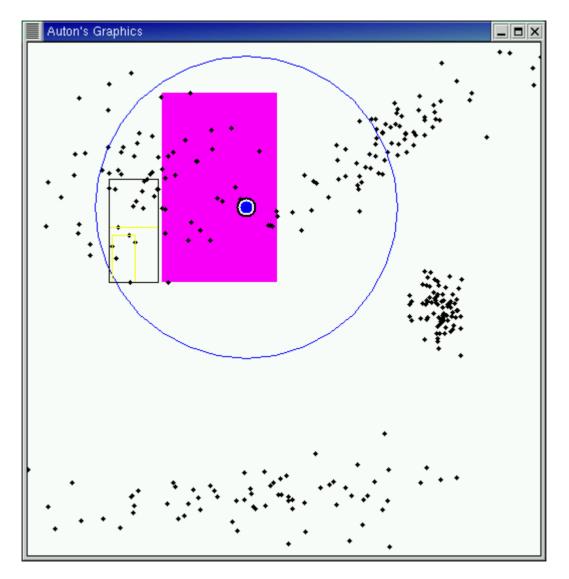


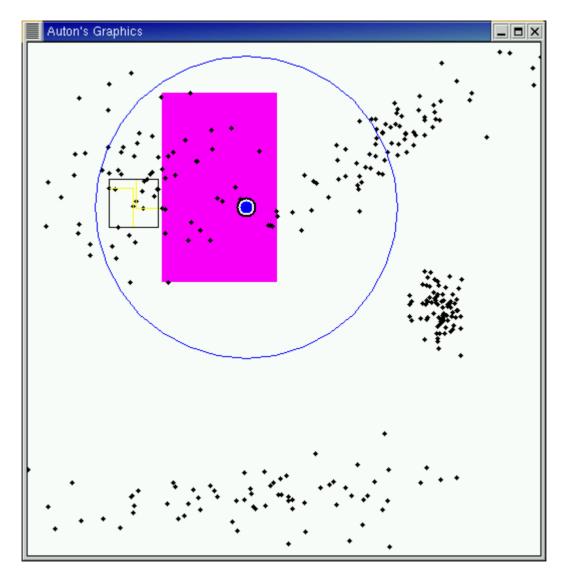


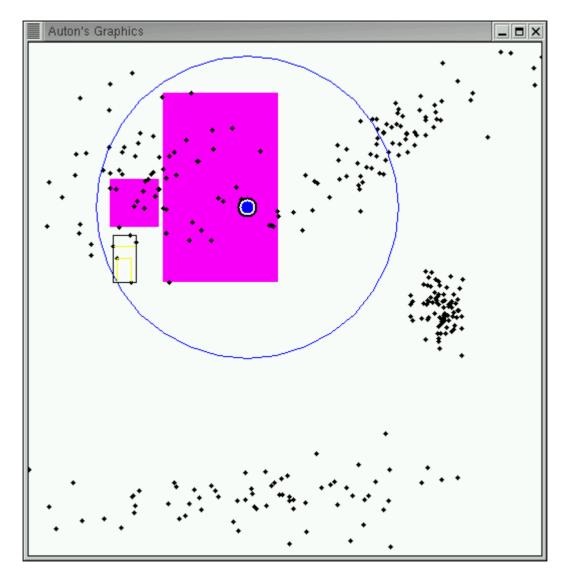


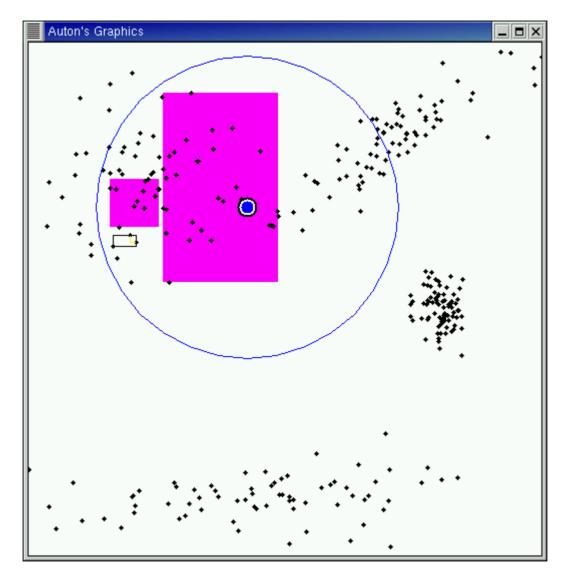


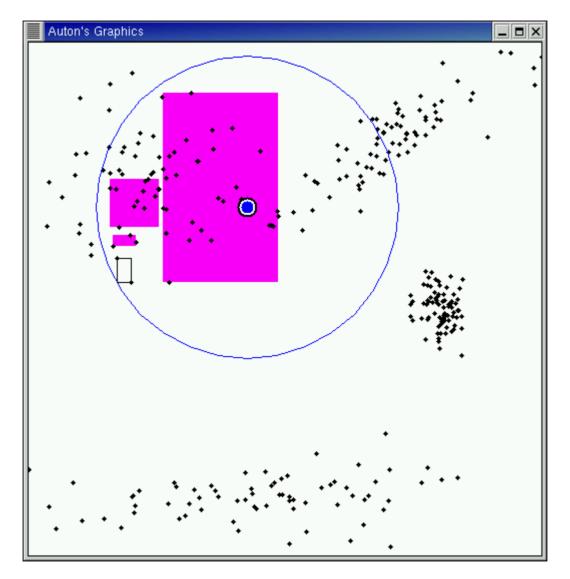


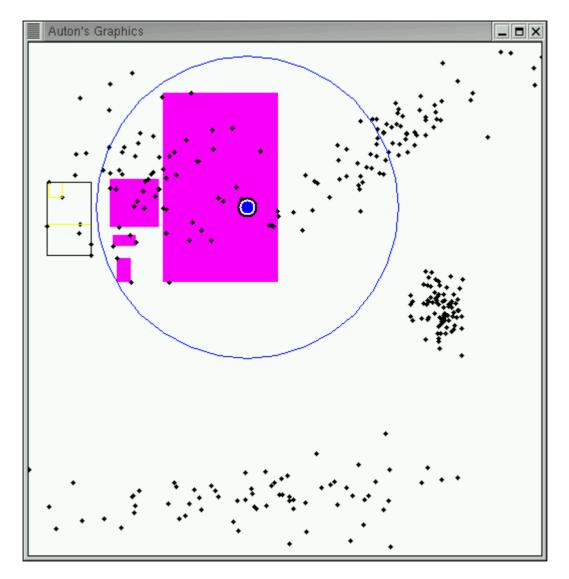


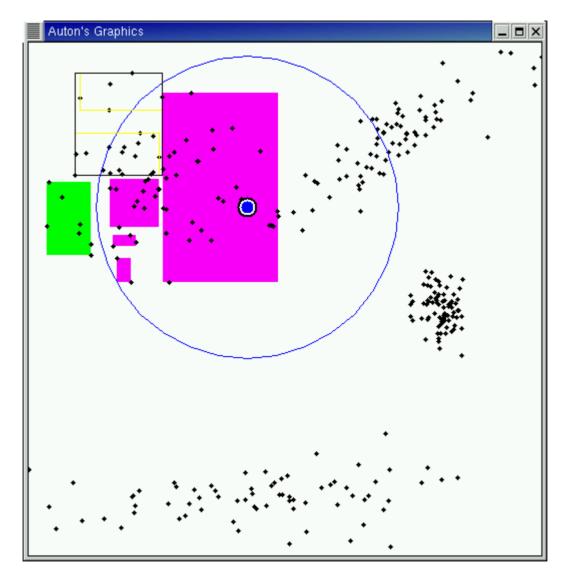


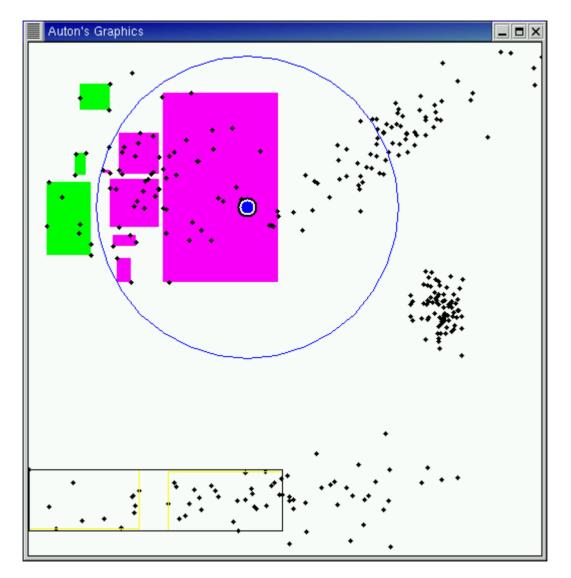


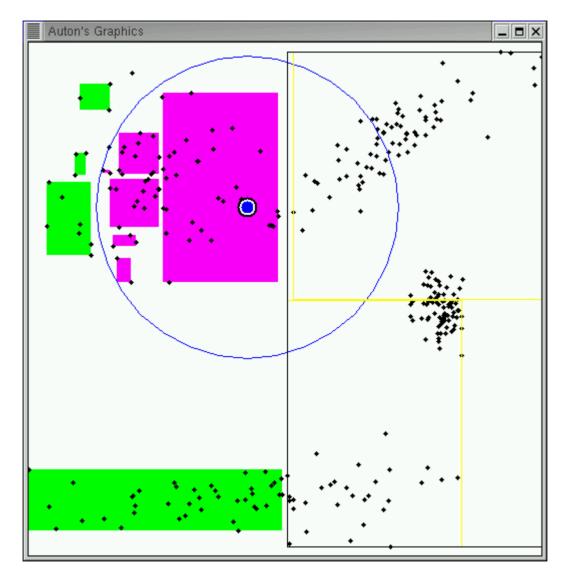


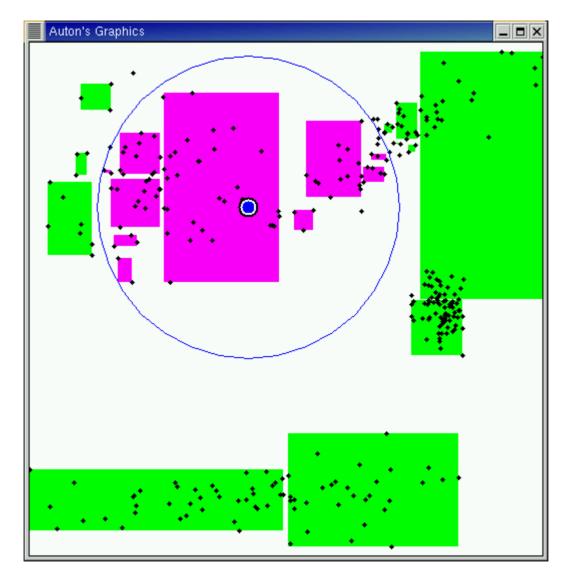


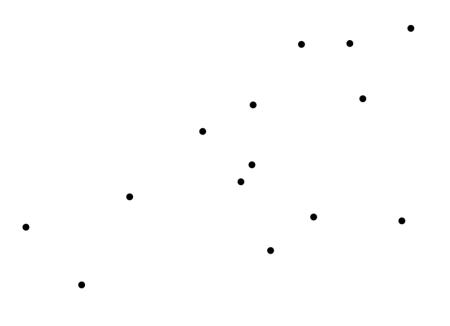




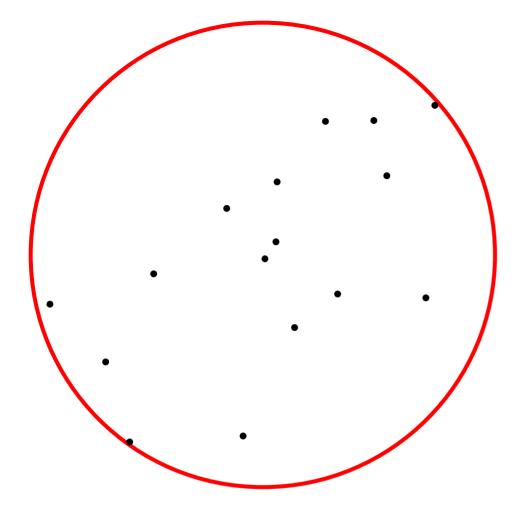




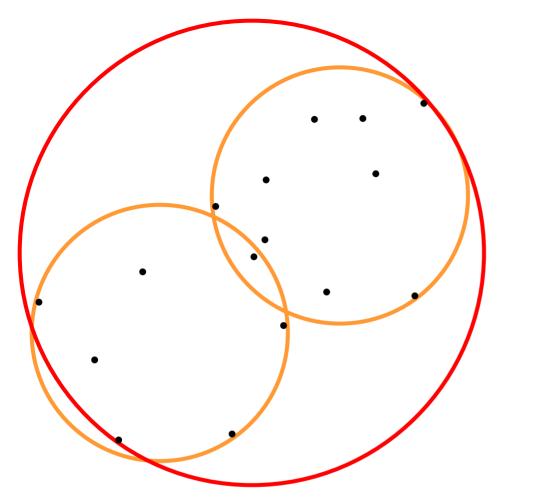




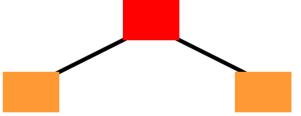
A Set of Points in a metric space

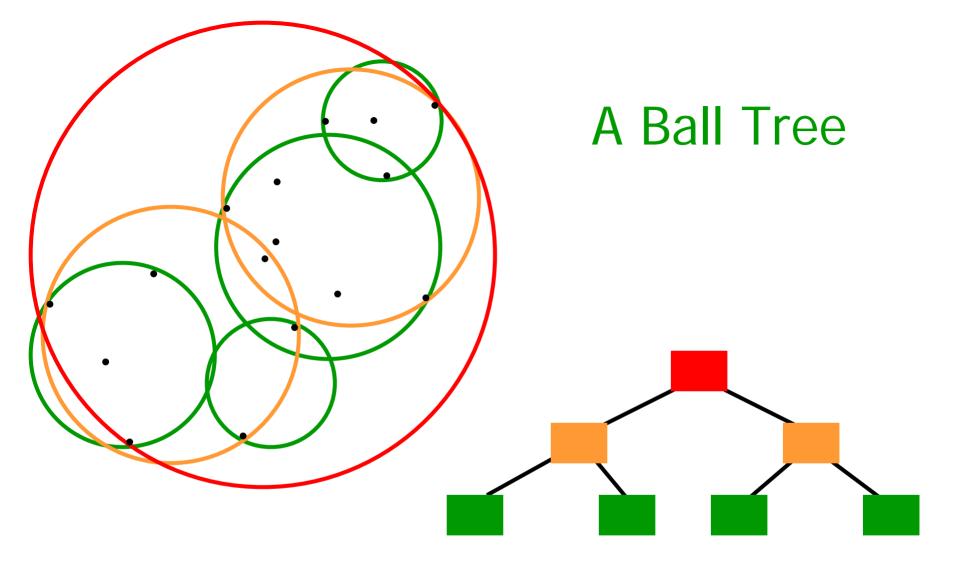


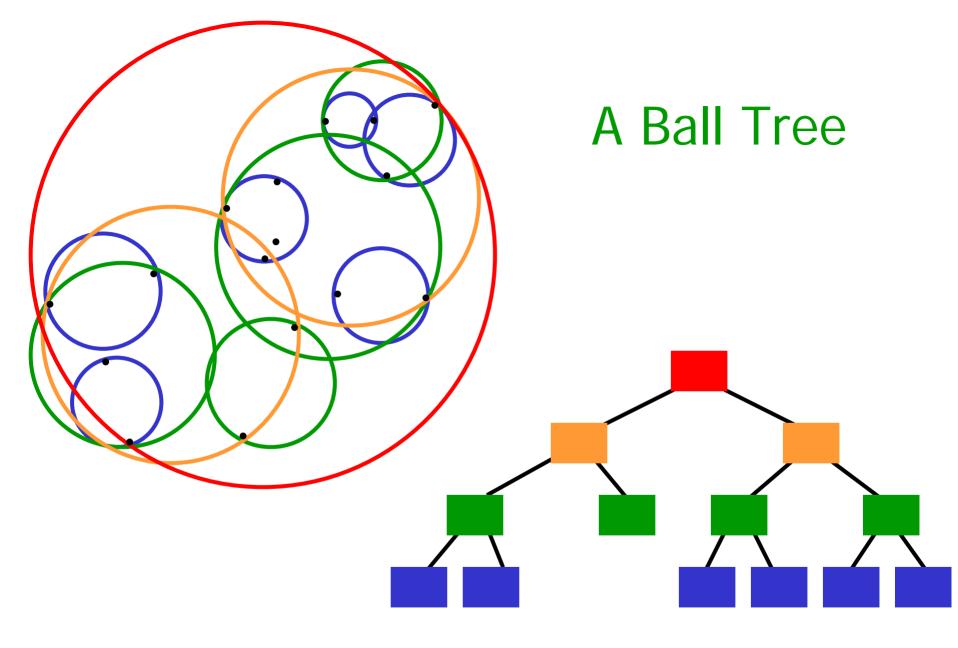
Ball Tree root node

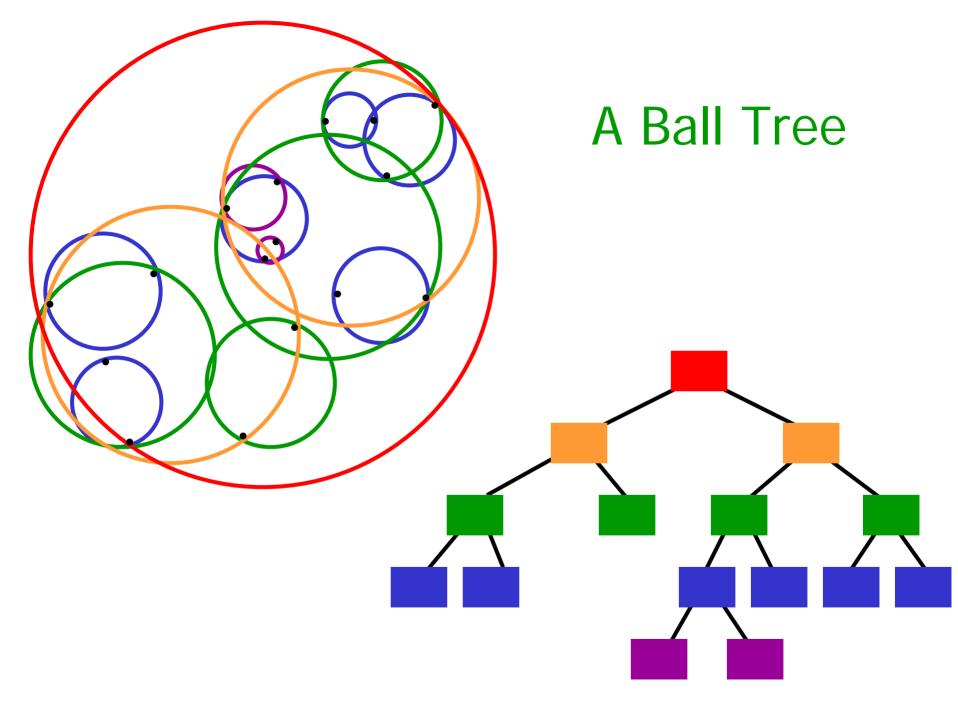


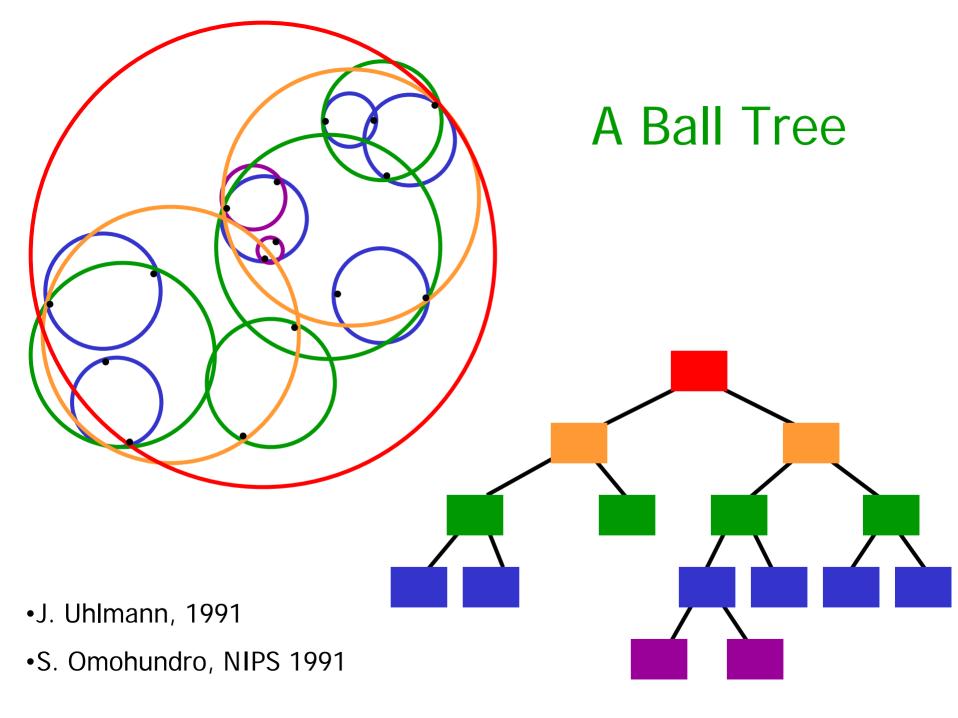
A Ball Tree







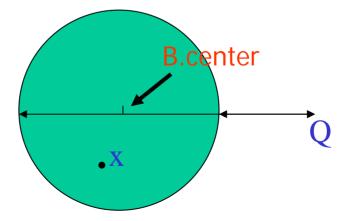




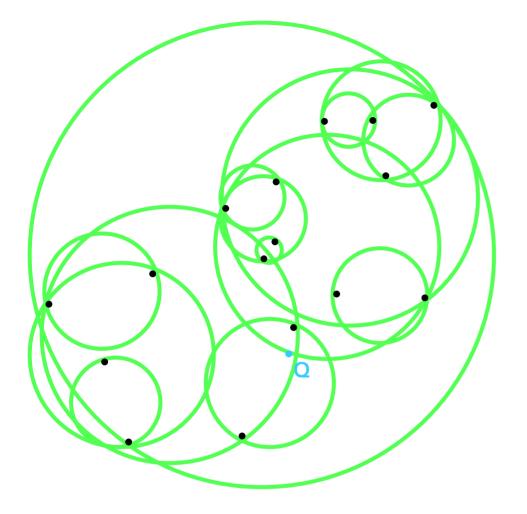
Ball-trees: properties

Let *Q* be any query point and let *x* be a point inside ball *B*

 $|\mathbf{x} - \mathbf{Q}| \ge |\mathbf{Q} - B.center| - B.radius$ $|\mathbf{x} - \mathbf{Q}| \le |\mathbf{Q} - B.center| + B.radius$

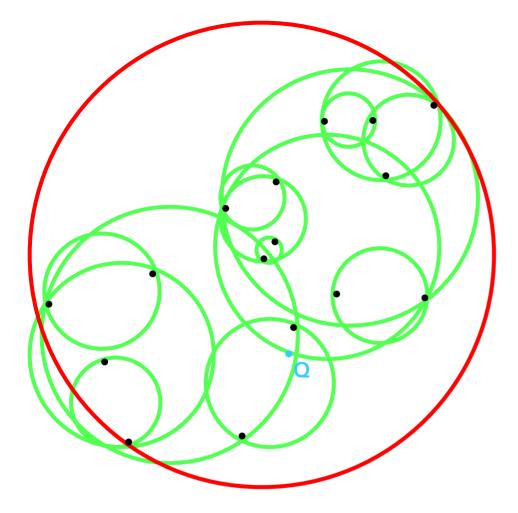


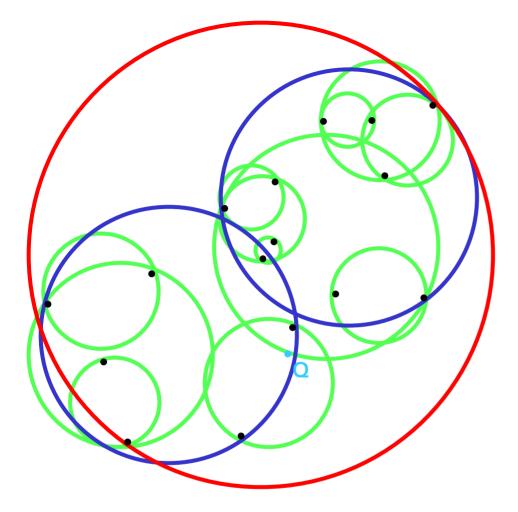
Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

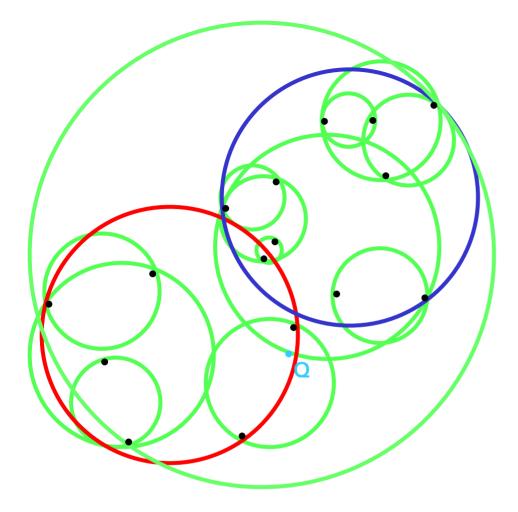


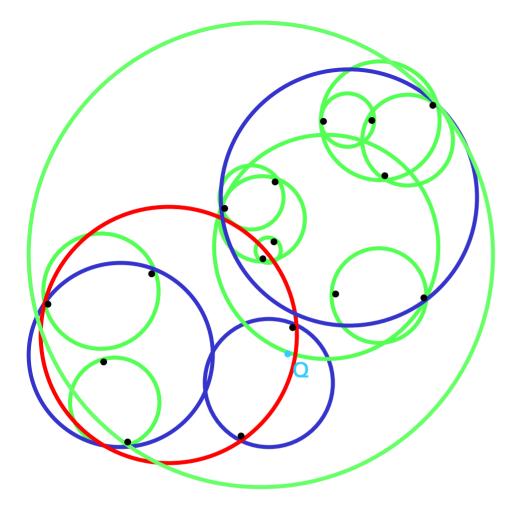
Goal: Find out the 2-nearest neighbors of Q.

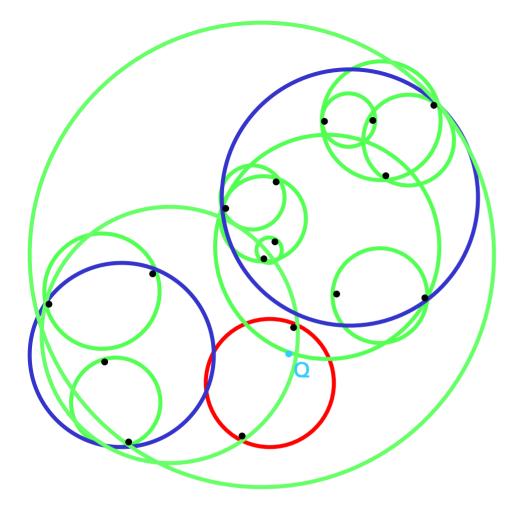
- •J. Uhlmann, 1991
- •S. Omohundro, NIPS 1991

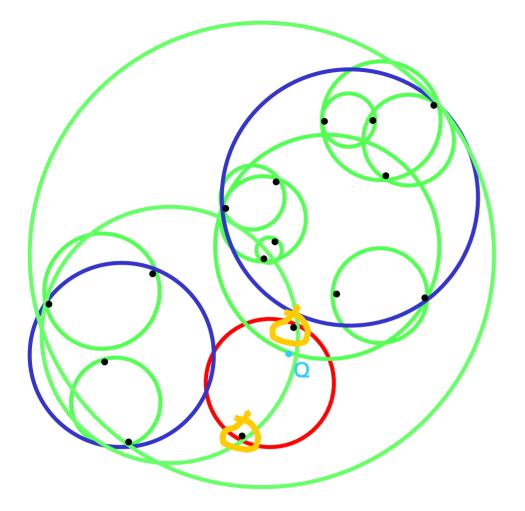




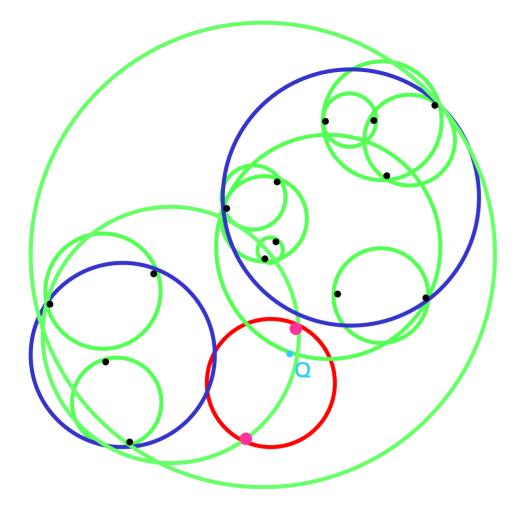






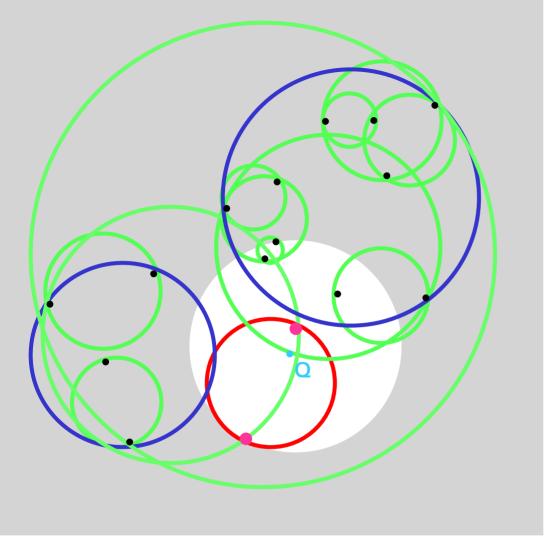


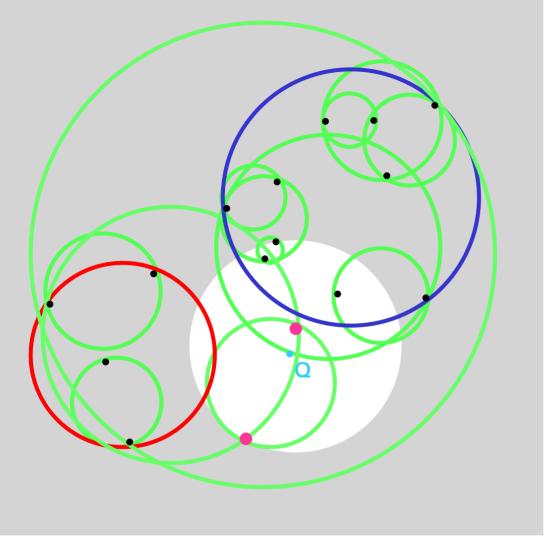
We've hit a leaf node, so we explicitly look at the points in the node

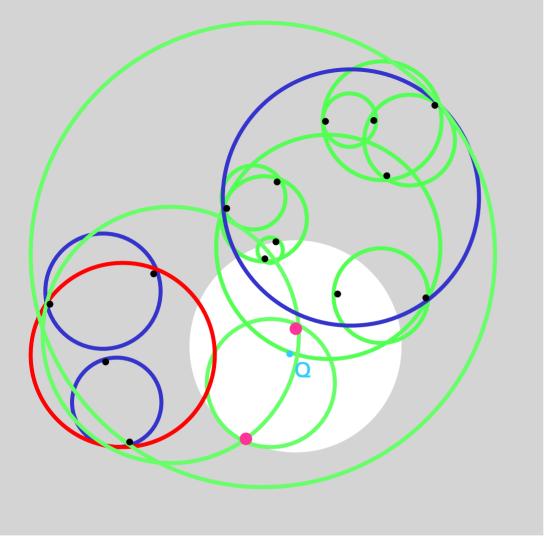


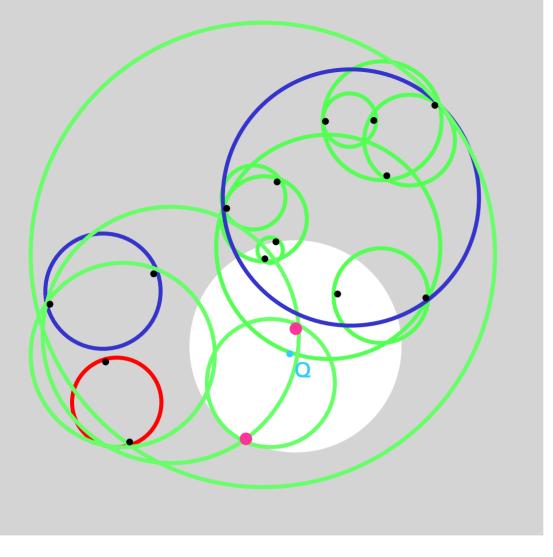
Two nearest neighbors found so far are in pink (remember we have

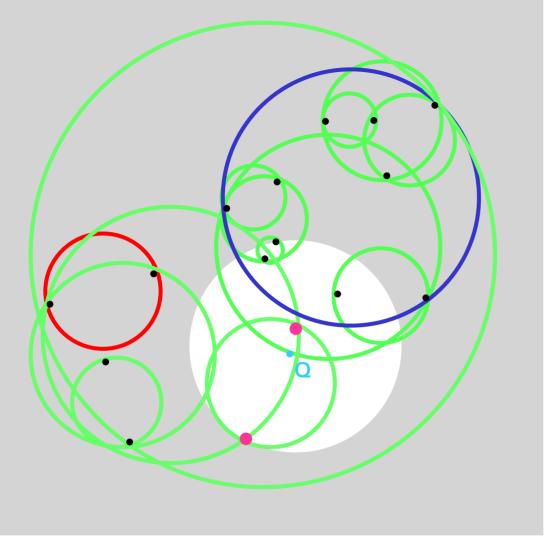
yet to search the blue balls)

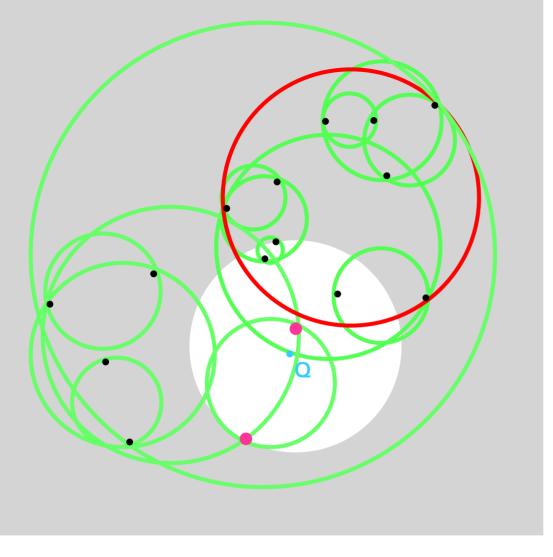


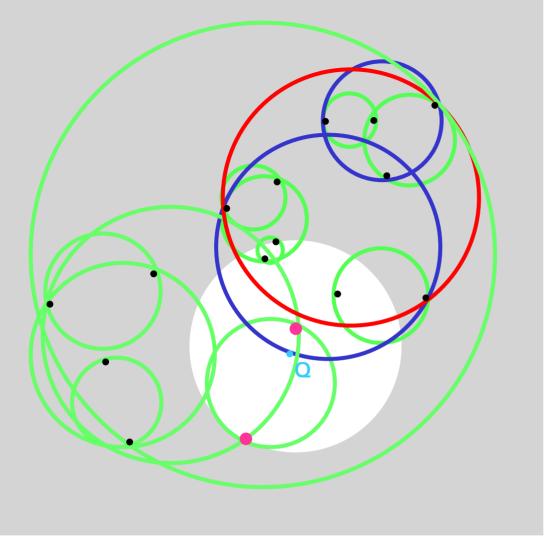


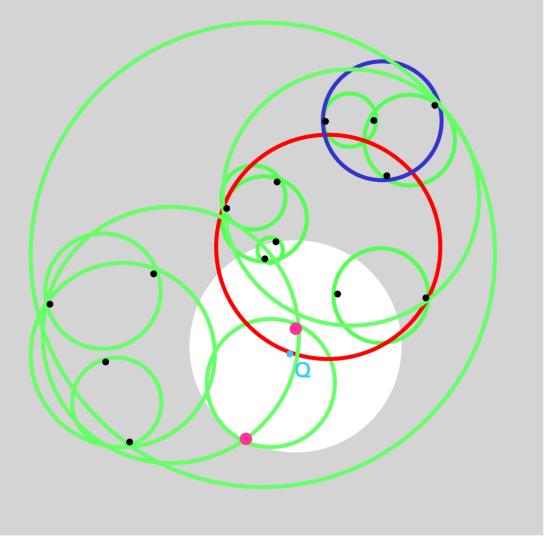


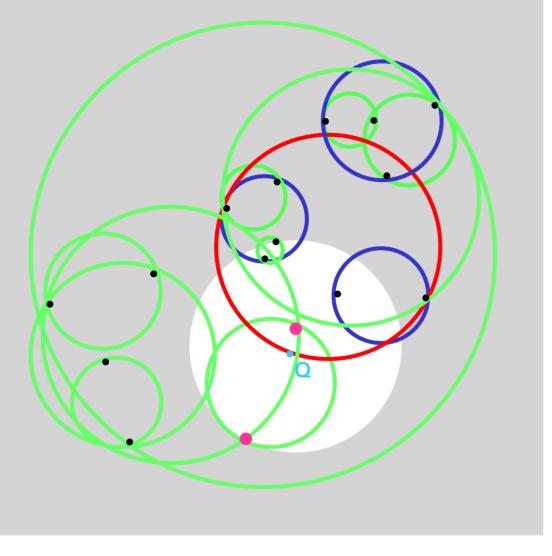


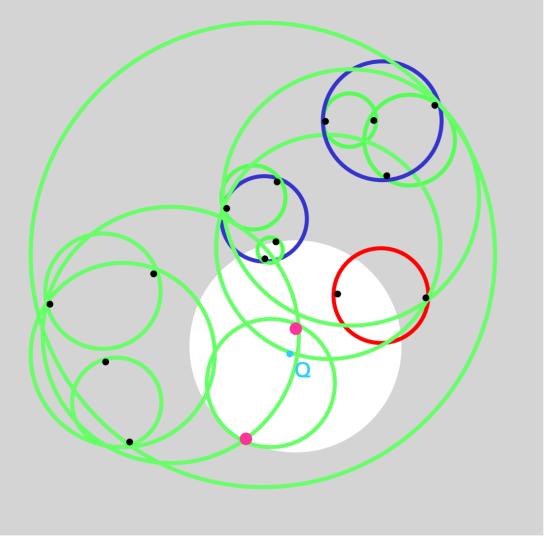


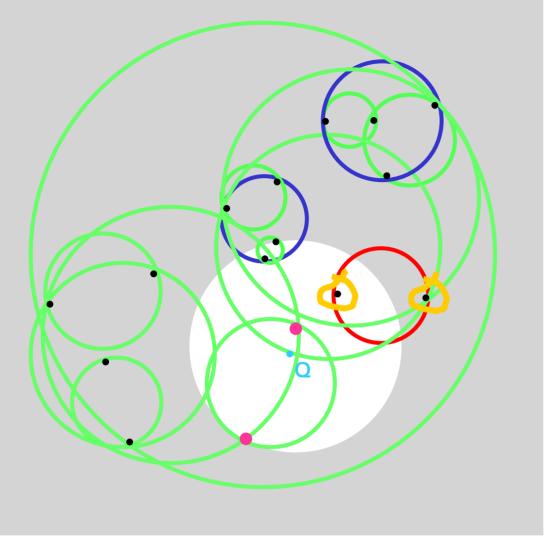


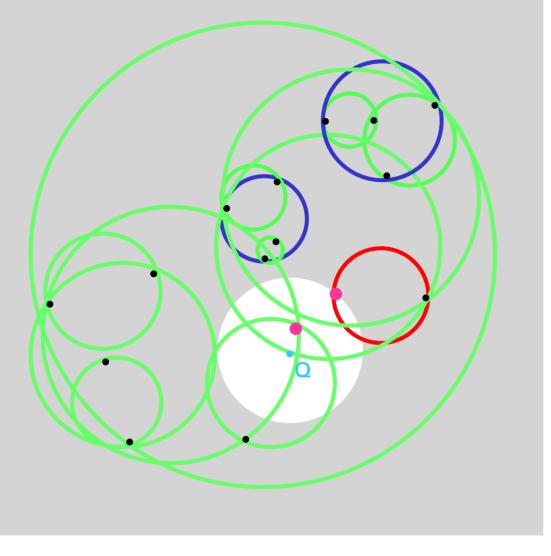


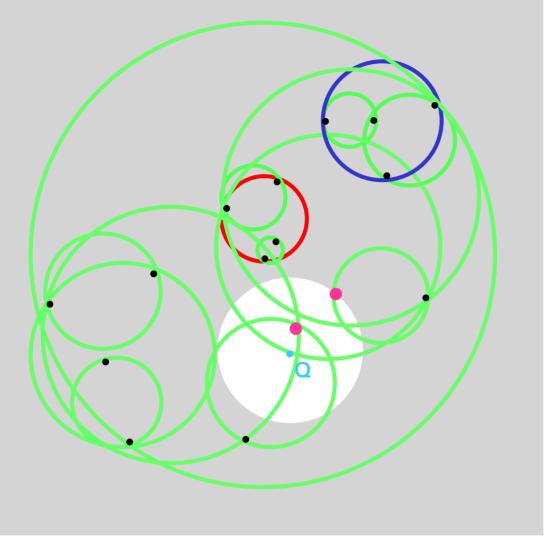


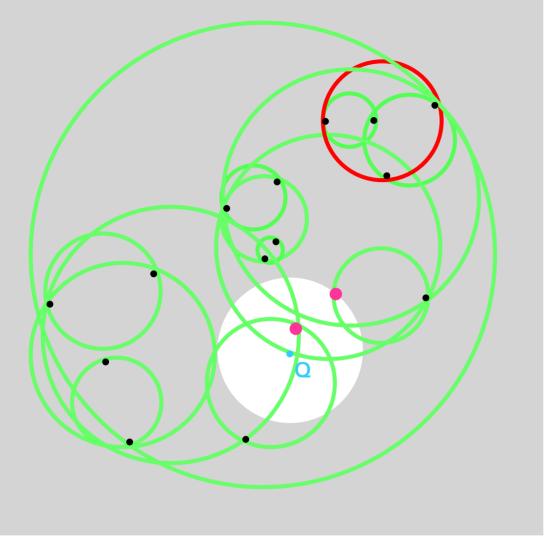


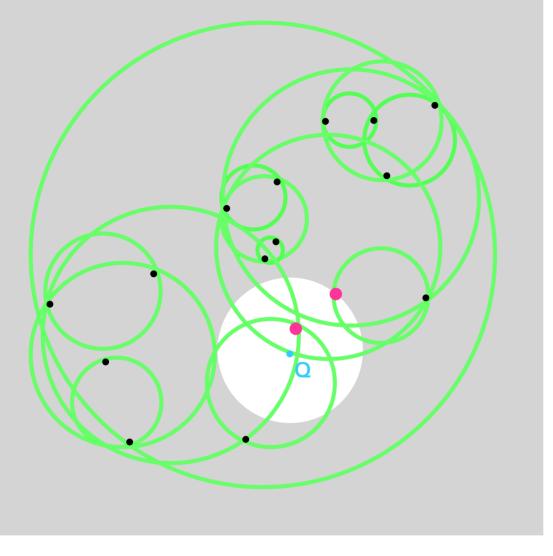










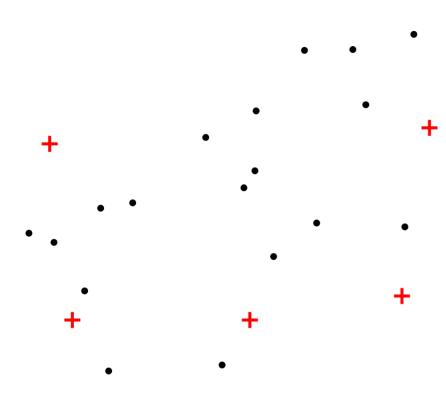


Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

KNS2

- Assume binary output
- Assume positive class is much less frequent than negative class
- Assume we want more than a "positive/negative" prediction: we want to know exactly how many of the K-NN are from the +ve class

KNS2 does this without finding the K-NN



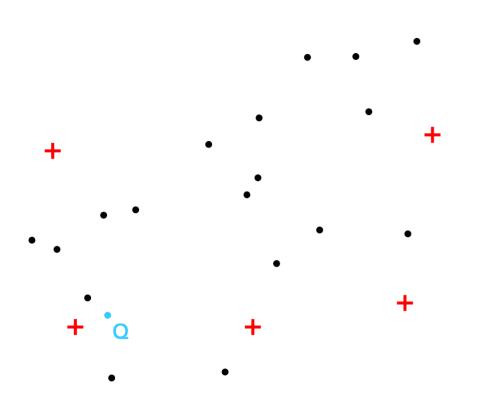
Assume we have a set of data points.

Some are +ve points (denoted +)

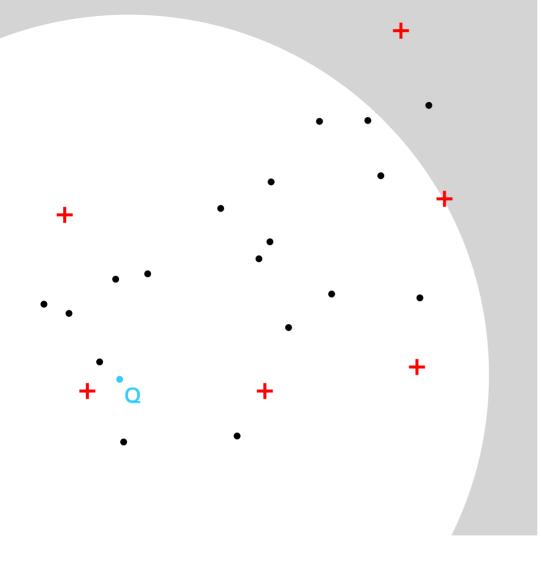
The large majority are –ve points (denoted •)

Assume we have a set of data points. + Some are +ve points (denoted -) Preprocessing: Put all The vast majority are – your +ve points in a ve points (denoted •) small ball tree Preprocessing: Put all

your -ve points in a separate large ball tree

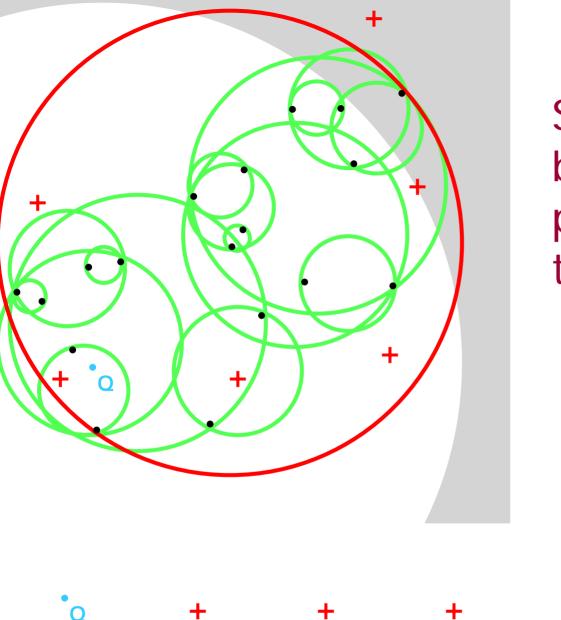


Goal: Find out how many of the 5-nearest neighbors of Q are positive.

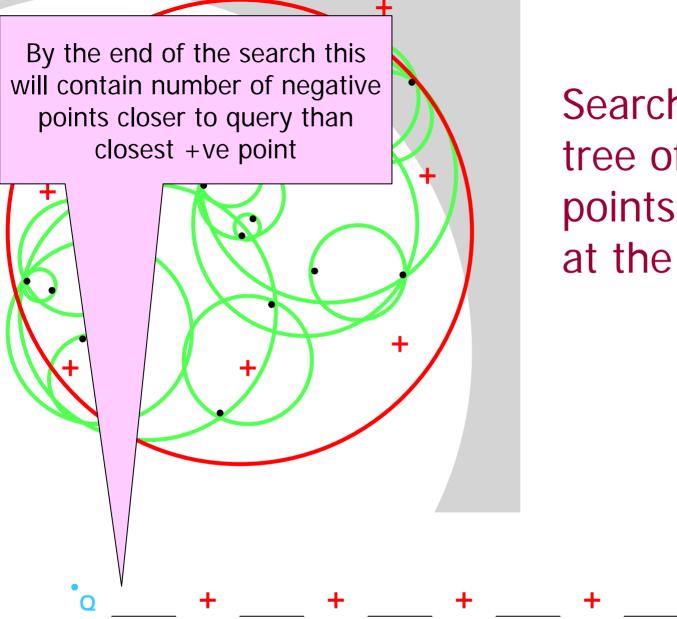


Step One: Find the five nearest +ve points using KNS1.

We're assuming there are far fewer +ves than -ves so this is not the dominant cost.



Step 2: Search the ball-tree of –ve points starting at the root.



Search the balltree of –ve points starting at the root. By the end of the search this will contain number of negative points closer to query than closest +ve point

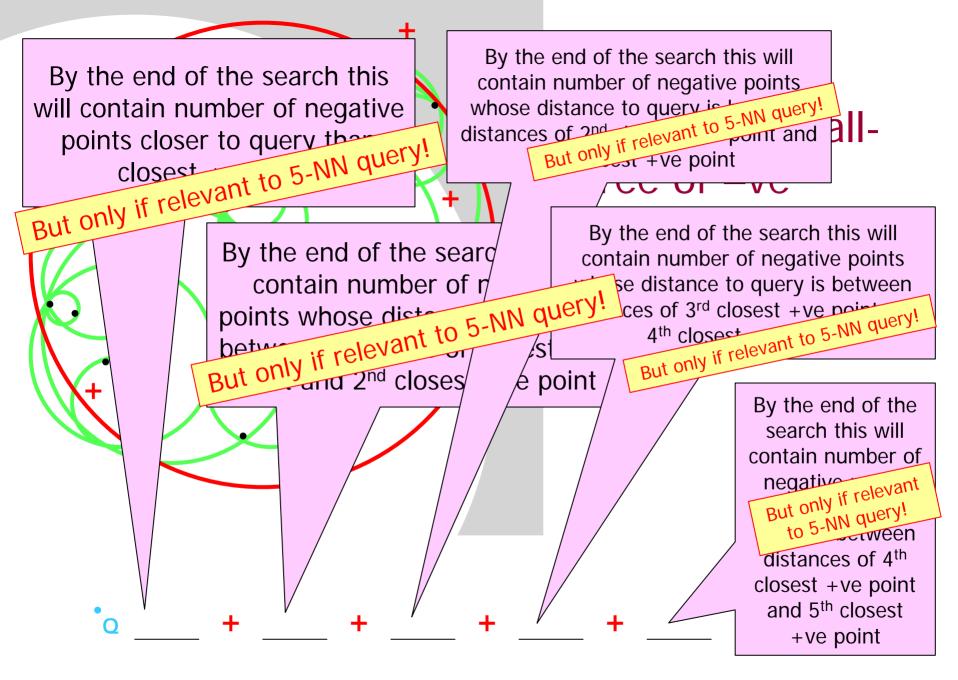
Search the balltree of –ve ints starting the root.

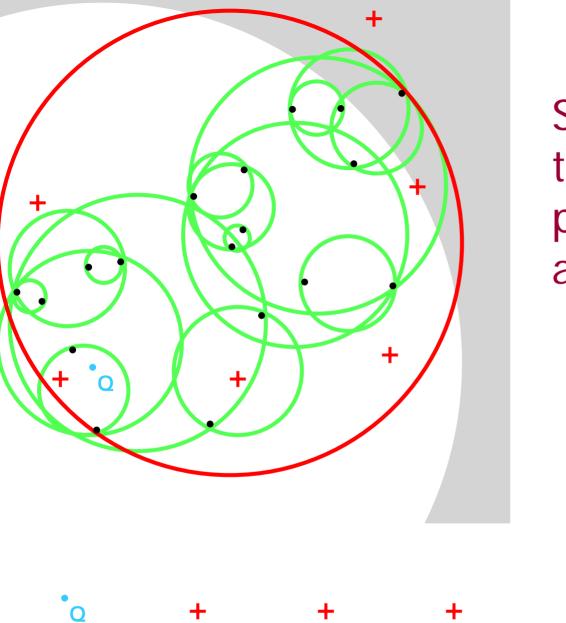
By the end of the search this will contain number of negative points whose distance to query is between distances of closest +ve point and 2nd closest +ve point By the end of the search this will contain number of negative points closer to query than closest +ve point By the end of the search this will contain number of negative points whose distance to query is between distances of 2nd closest +ve point and 3rd closest +ve point

point

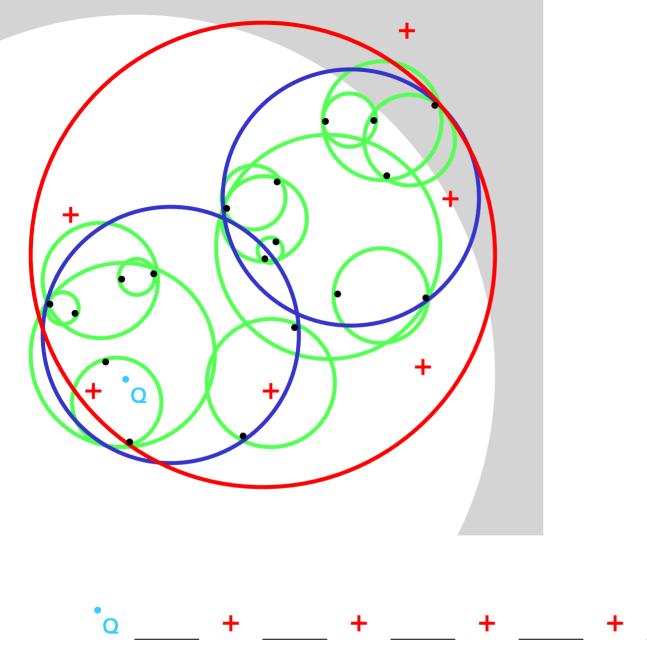
By the end of the seard contain number of r points whose distance between distances of point and 2nd closes By the end of the search this will contain number of negative points whose distance to query is between distances of 3rd closest +ve point and 4th closest +ve point

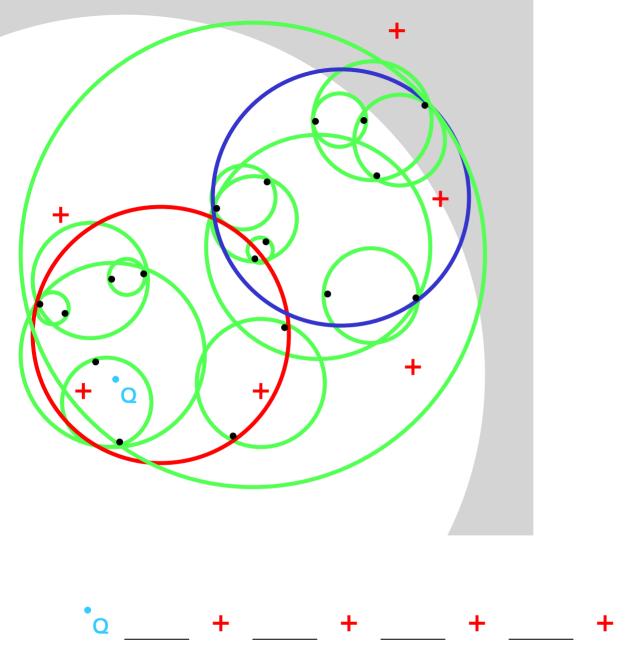
> By the end of the search this will contain number of negative points whose distance to query is between distances of 4th closest +ve point and 5th closest +ve point



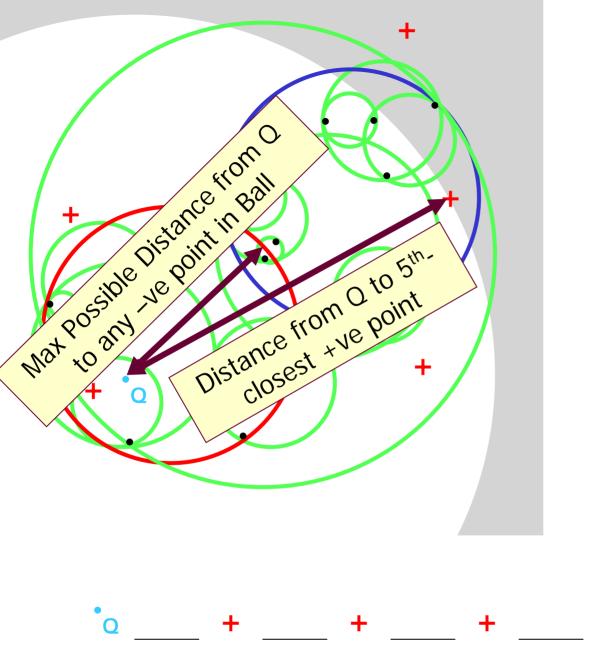


Search the balltree of –ve points starting at the root.



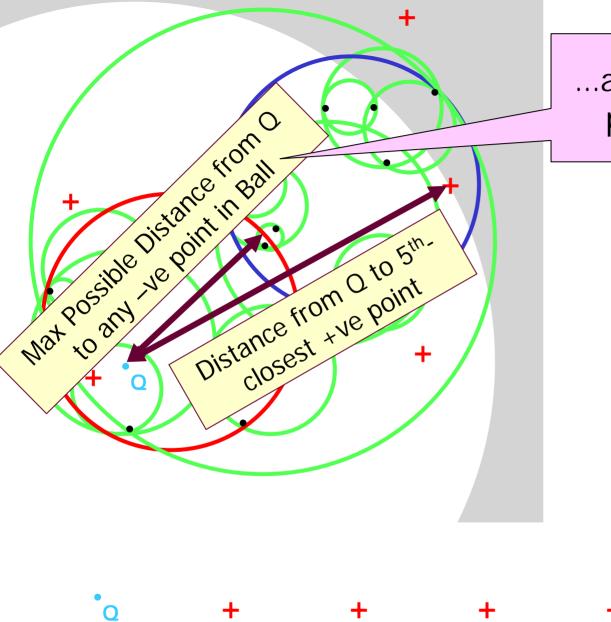


__ +

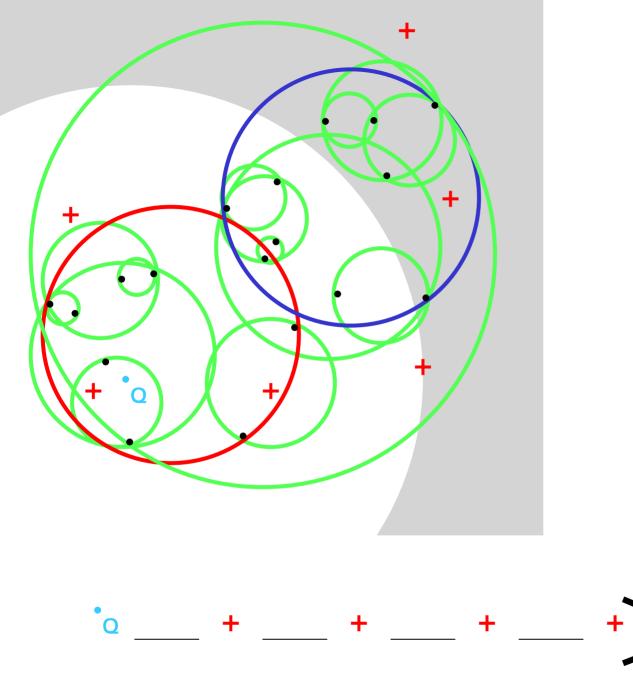


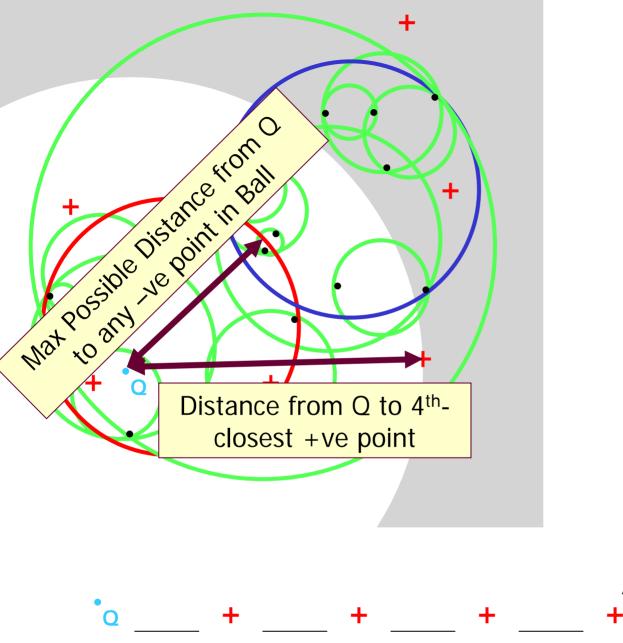
____ +

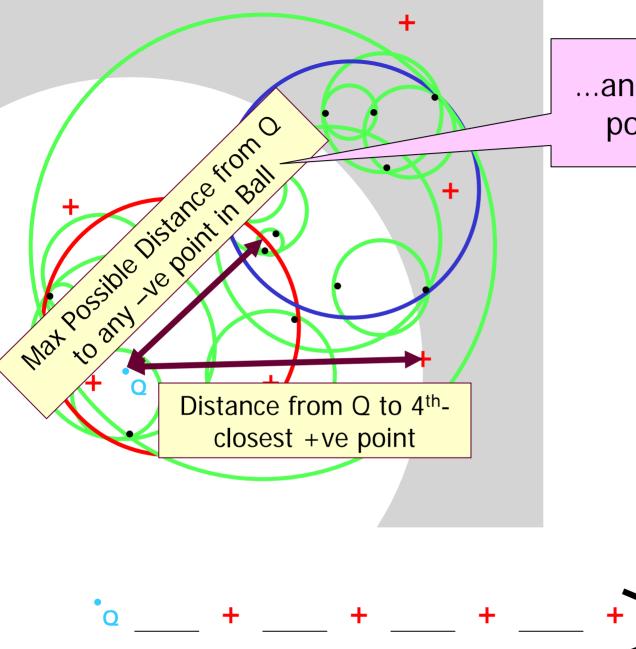
+



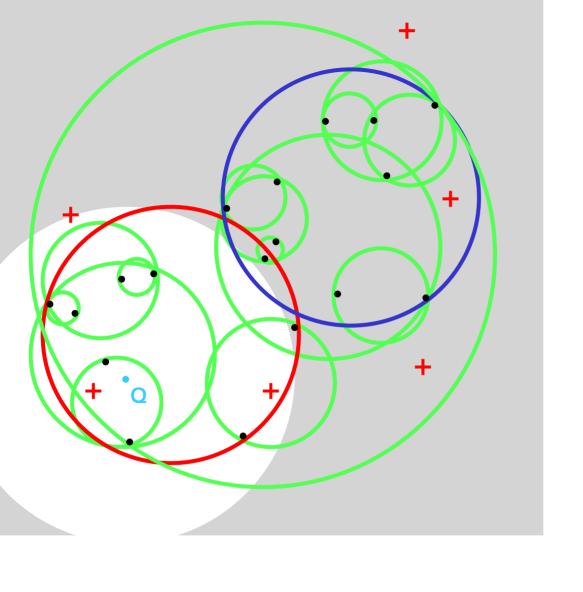
...and there are eight points in the ball

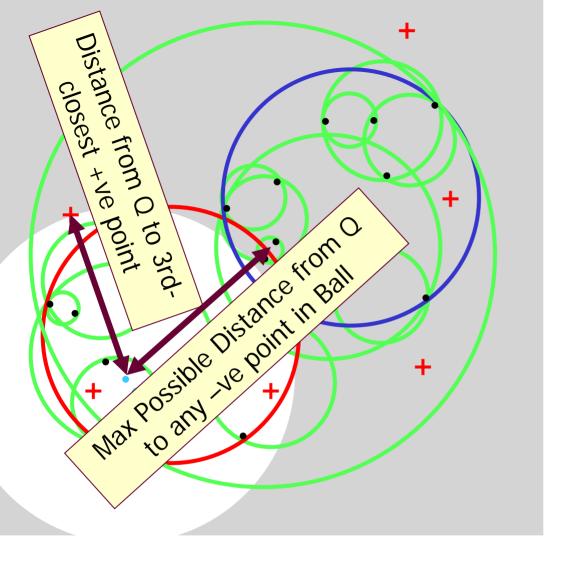


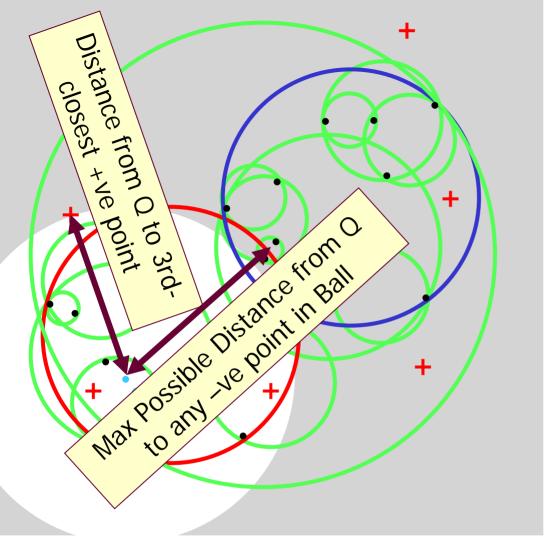




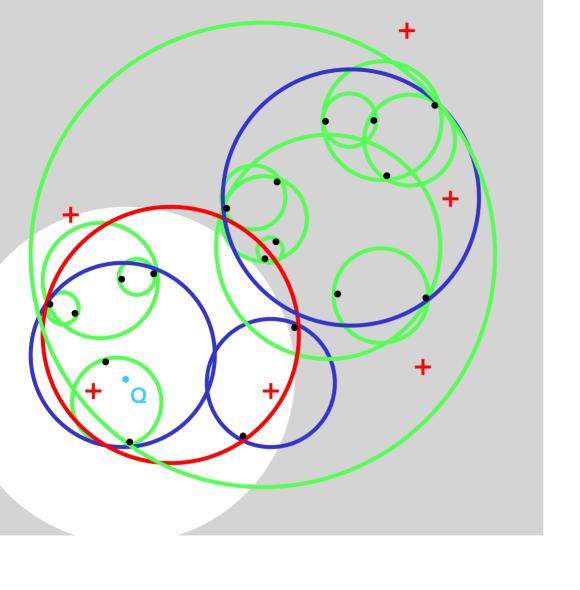
...and there are eight points in the ball

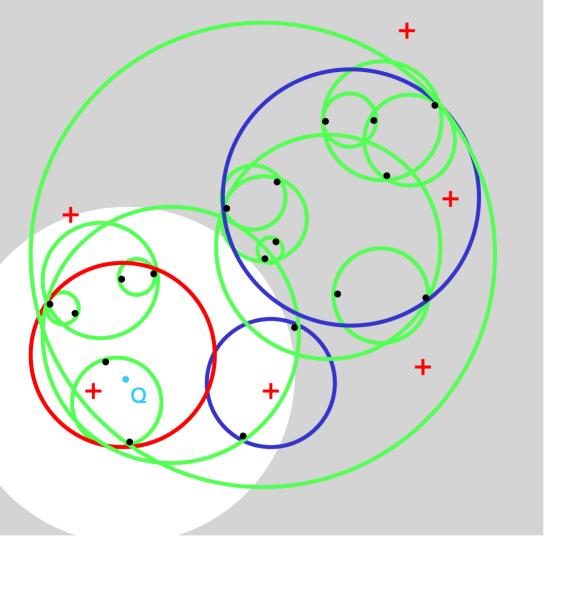


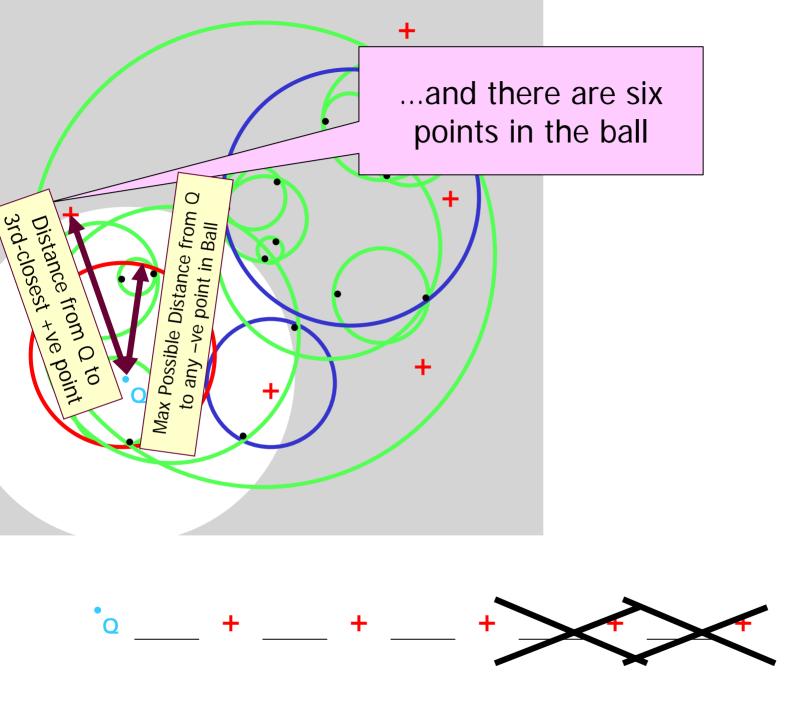


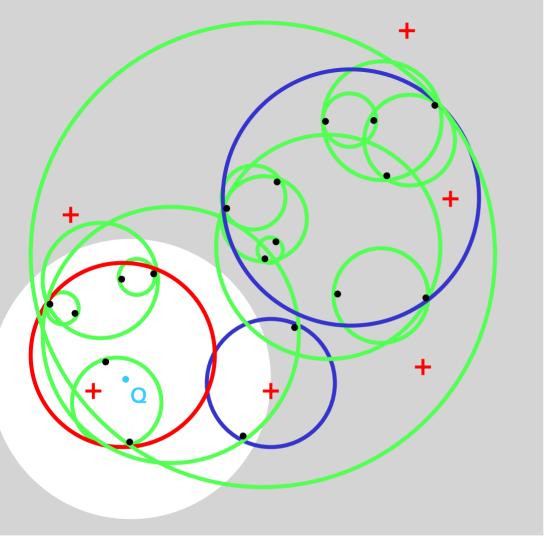


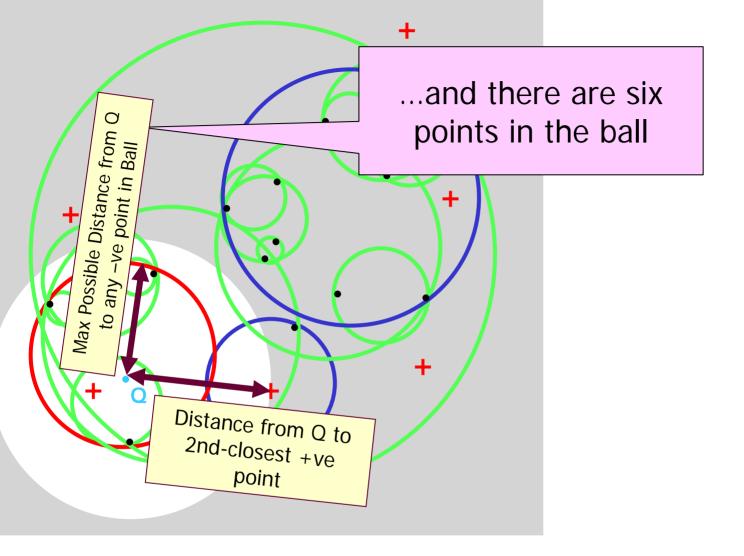
No prune!

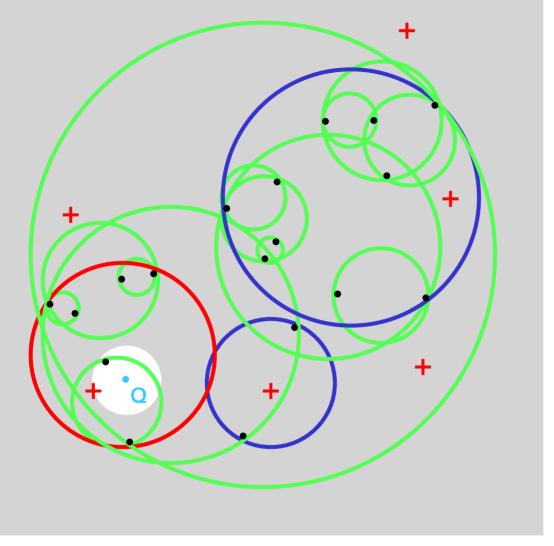


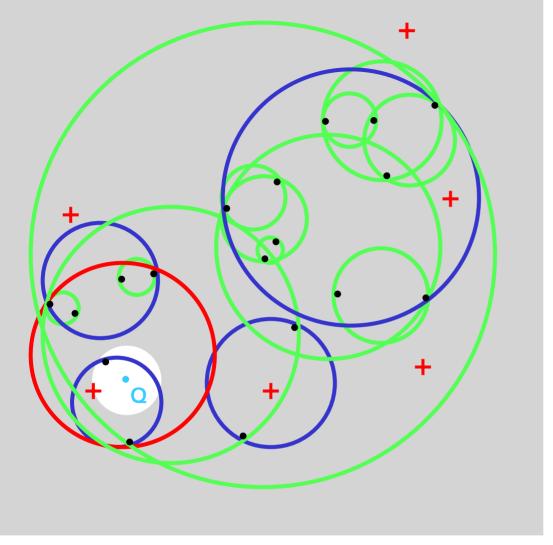


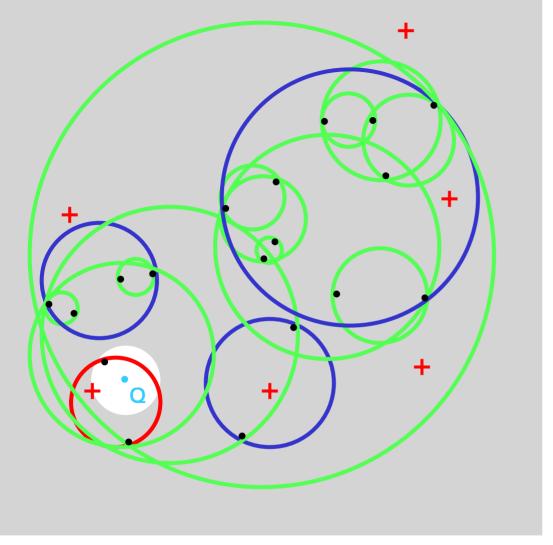


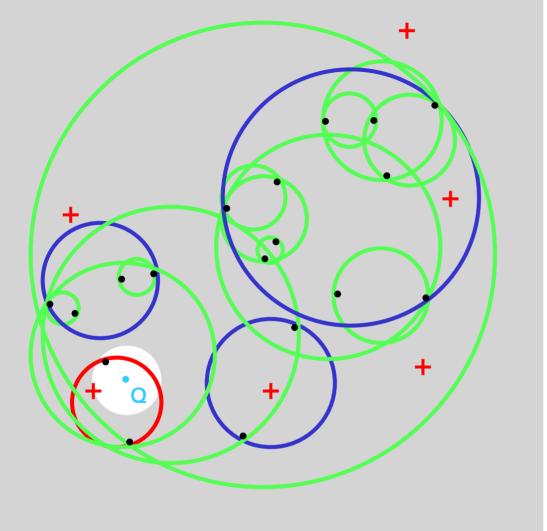




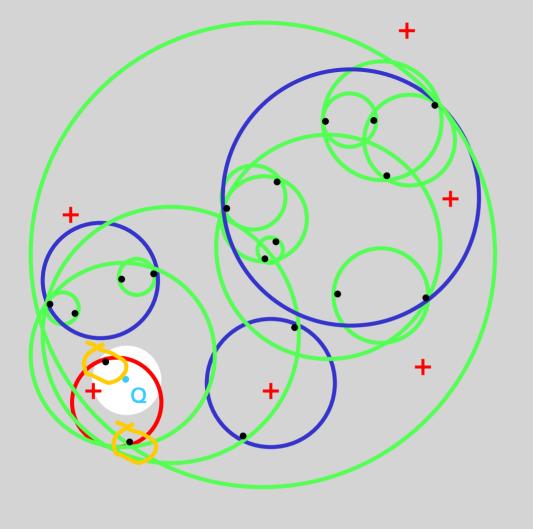




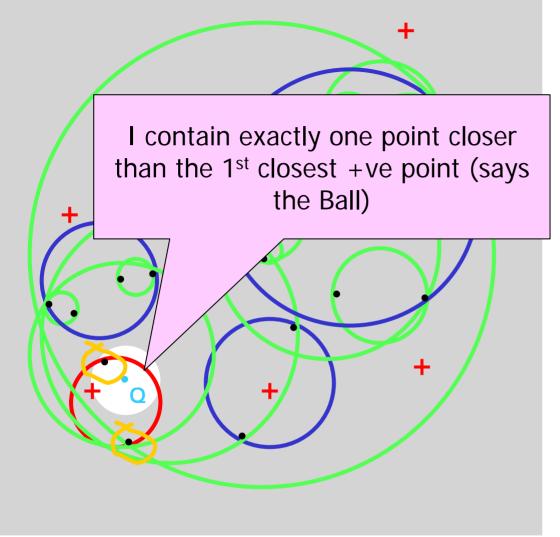




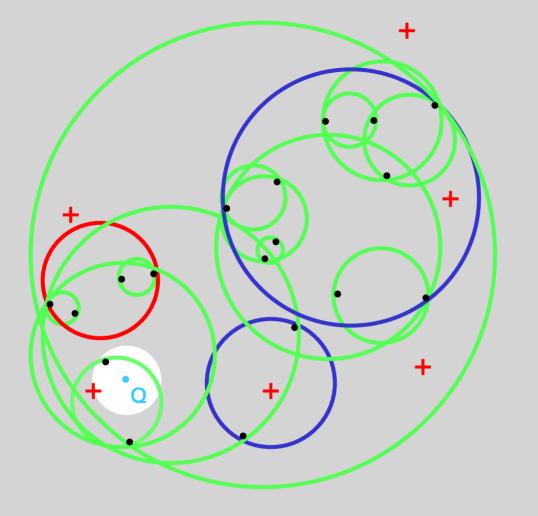
No prune.



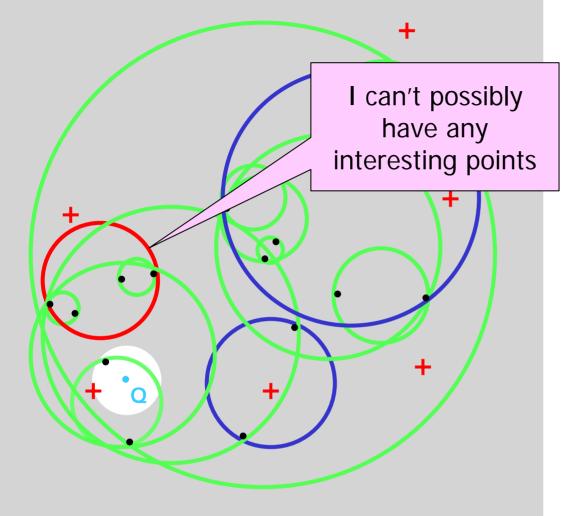
No prune. Ball is leaf so explore its points



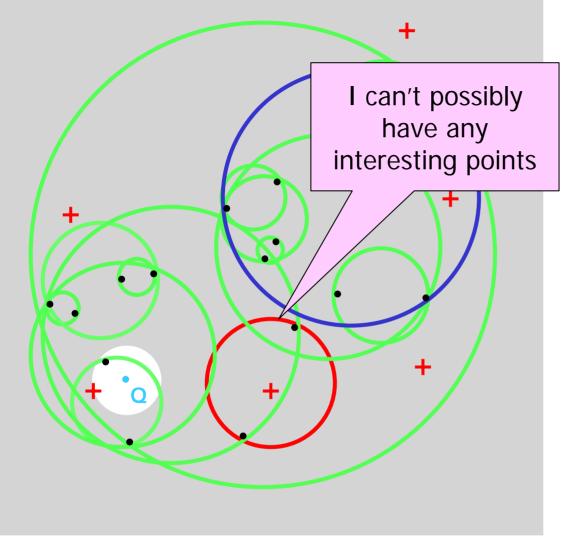
No prune. Ball is leaf so explore its points

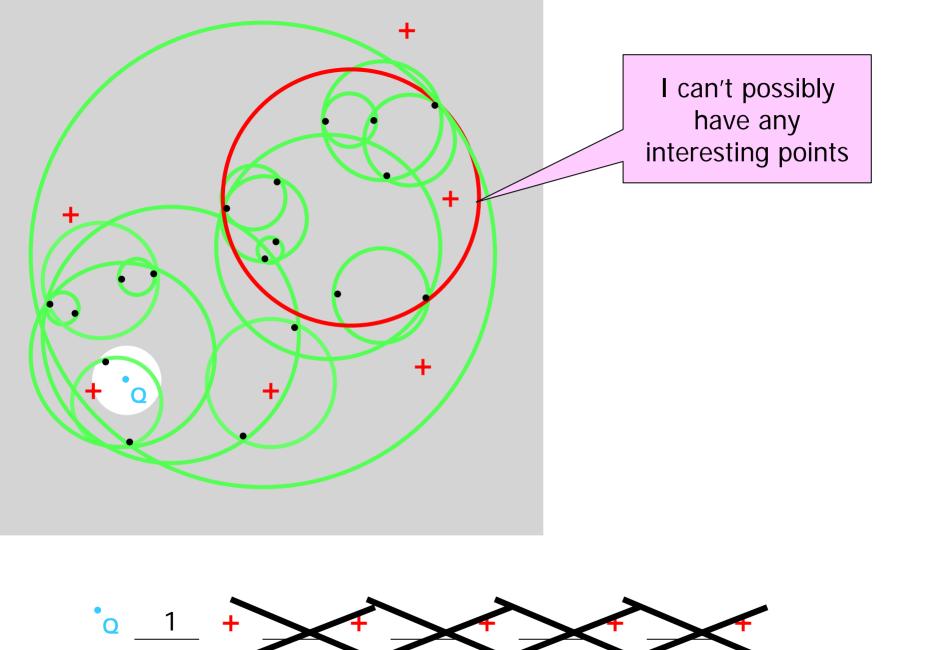


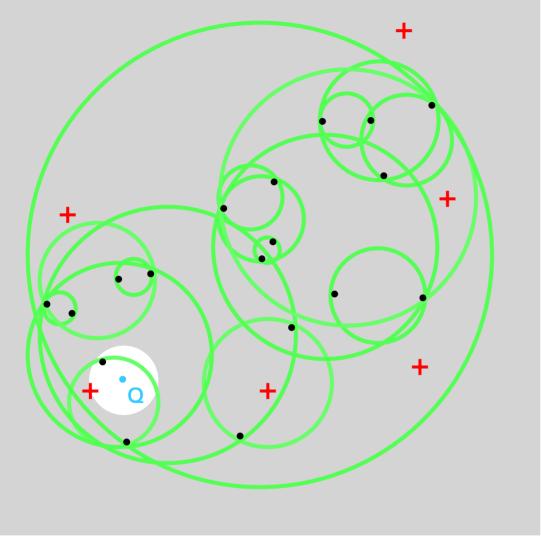
Return and try other sibling



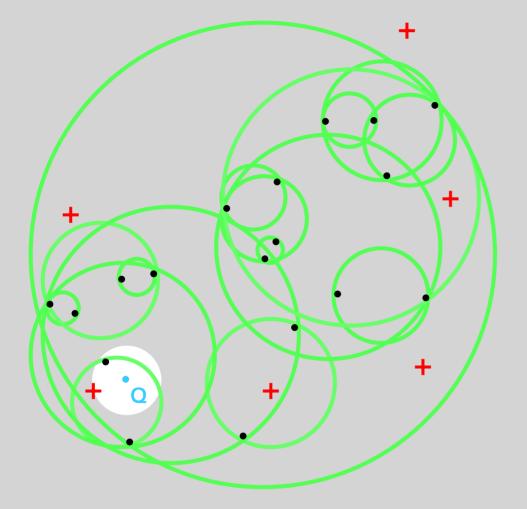
Return and try other sibling







We're done

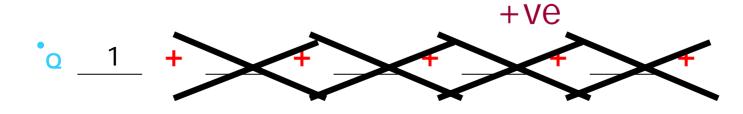


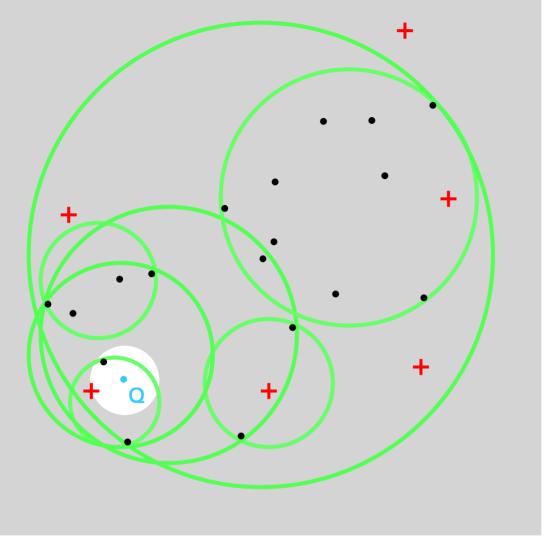
We're done

There's one -ve point closer than the closest +ve point.

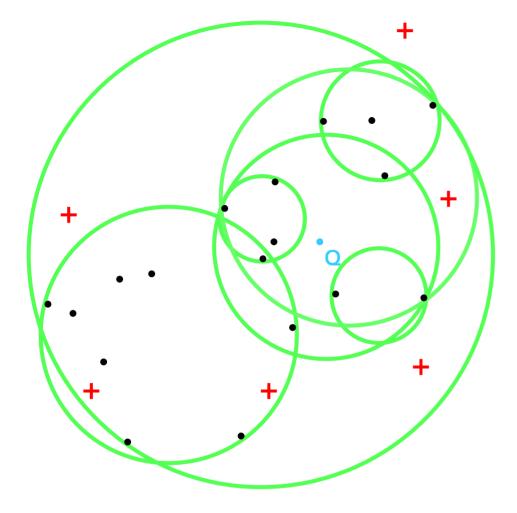
There are more than 3 -ve points closer than the 2nd closest +ve point.

=> <u>Exactly</u> 1 of the 5 nearest neighbors is





Balls visited

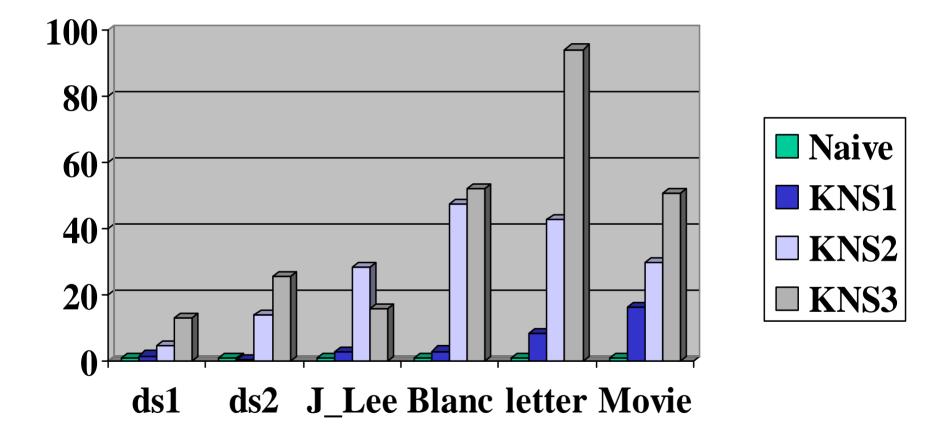


Another example

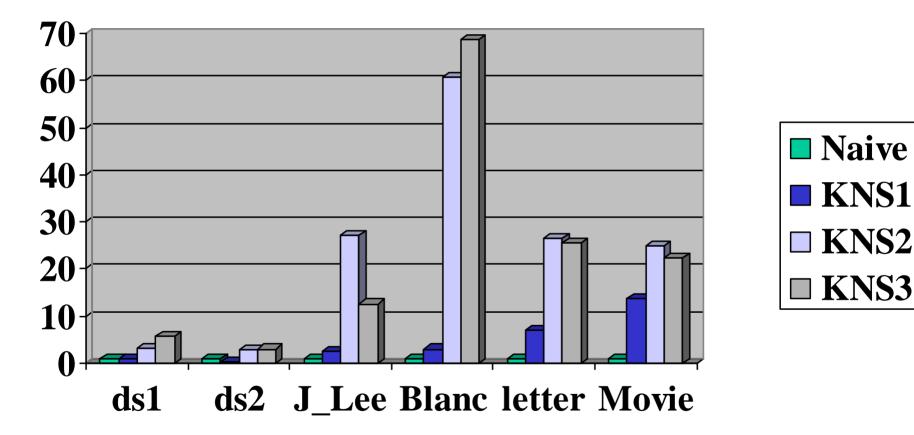
Experimental results

Dataset	Num. of	Num. of	Num.of	Num.pos/Num.neg
	records	Dimensions	positive	
ds1	26733	6348	804	0.03
ds1.10pca	26733	10	804	0.03
ds1.100pca	26733	100	804	0.03
ds2	88358	1.1×10^6	211	0.002
ds2.100anchor	88358	100	211	0.002
J_Lee. 100pca	181395	100	299	0.0017
Blanc_Mel	186414	10	824	0.004
Dataset	Num.	Num. of	Num.of	Num.pos/Num.neg
	records	Dimensions	positive	
Letter	20000	16	790	0.04
Ipums	70187	60	119	0.0017
Movie	38943	62	7620	0.24
Kdd99(10%)	494021	176	97278	0.24

Num of Distance computations <u>Speedup</u> for K-NN



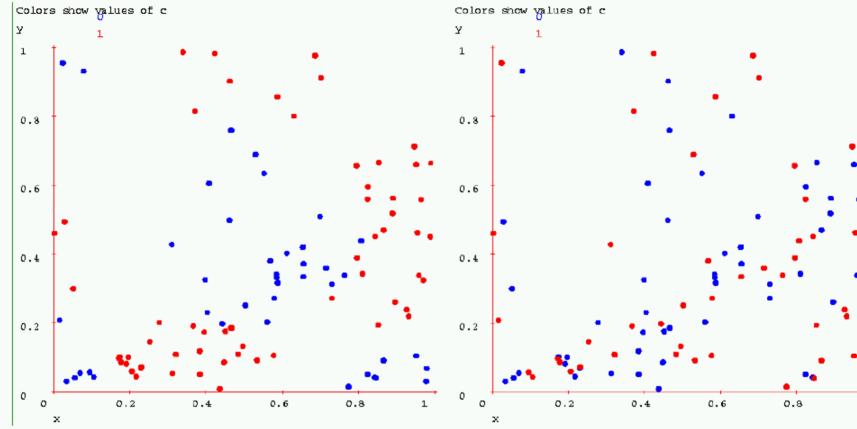
Wall-clock-time speedup for k-NN



		NAIVE		KNS1		KNS2		KNS3	
		dists	time	dists	time	dists	time	dists	time
			(secs)	speedup	speedup	speedup	speedup	speedup	speedup
ideal	k=9	9.0×10^{7}	30	96.7	56.5	112.9	78.5	4500	486
	k=101			23.0	10.2	24.7	14.7	4500	432
Diag2d(10%)k=9		9.0×10^{7}	30	91	51.1	88.2	52.4	282	27.1
	k=101			22.3	8.7	21.3	9.3	167.9	15.9
Diag2d	k=9	9.0×10^{9}	3440	738	366	664	372	2593	287
	k=101			202.9	104	191	107.5	2062	287
Diag3d	k=9	9.0×10^{9}	4060	361	184.5	296	184.5	1049	176.5
-	k=101			111	56.4	95.6	48.9	585	78.1
Diag10d	k=9	9.0×10^{9}	6080	7.1	5.3	7.3	5.2	12,7	2.2
	k=101			3.3	2,5	3.1	1.9	6.1	0.7
Noise2d	k=9	9.0×10^{7}	40	91.8	20.1	79.6	30.1	142	42.7
	k=101			22.3	4	16.7	4.5	94.7	43.5
ds1	k=9	6.4×10^{8}	4830	1.6	1.0	4.7	3.1	12.8	5.8
	k=101			1.0	0.7	1.6	1.1	10	4.2
ds1.10pca	k=9	6.4×10^{8}	420	11.8	11.0	33.6	21.4	71	20
-	k=101			4.6	3.4	6.5	4.0	40	6.1
ds1.100pca	k=9	6.4×10^{8}	2190	1.7	1.8	7.6	7.4	23.7	29.6
	k=101			0.97	1.0	1.6	1.6	16.4	6.8
ds2	k=9	8.5×10^{9}	105500	0.64	0.24	14.0	2.8	25.6	3.0
	k=101			0.61	0.24	2.4	0.83	28.7	3.3
ds2.100-	k=9	7.0×10^{9}	24210	15.8	14.3	185.3	144	580	311
	k=101			10.9	14.3	23.0	19.4	612	248
J_Lee.100-	k=9	3.6×10^{10}	142000	2.6	2,4	28.4	27.2	15.6	12.6
	k=101			2.2	1.9	12,6	11.6	37.4	27.2
BlancMel	k=9	3.8×10^{10}	44300	3.0	3.0	47.5	60.8	51.9	60.7
	k=101			2.9	3.1	7.1	33	203	134.0
Letter	k=9	3.6×10^{8}	290	8.5	7.1	42,9	26.4	94,2	25.5
	k=101			3.5	2,6	9.0	5.7	45.9	9.4
Ipums	k=9	4.4×10^{9}	9520	195	136	665	501	1003	515
	k=101			69.1	50.4	144.6	121	5264	544
Movie	k=9	1.4×10^{9}	3100	16.1	13.8	29.8	24.8	50.5	22.4
	k=101			9.1	7.7	10.5	8.1	33.3	11.6
Kddcup99	k=9	2.7×10^{11}	1670000	4.2	4,2	574	702	4	4.1
(10%)	k=101			4.2	4,2	187.7	226.2	3.9	3.9

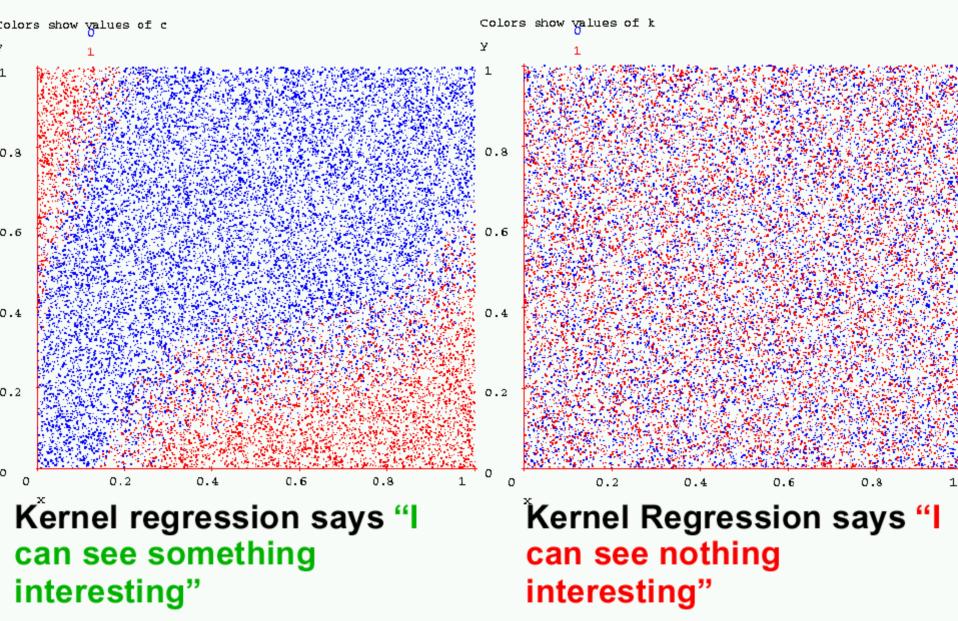
Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

All-pairs-of-points problems in statistics



Leave-one-out testing with one nearest neighbor says "I can see something interesting" Leave-one-out testing with one nearest neighbor says "I can see nothing interesting"

Kernel Regression



Kernel Density Estimation

Kernel Density estimation **Kernel Density estimation** says "I can see nothing say "I can see something

interesting"

interesting"

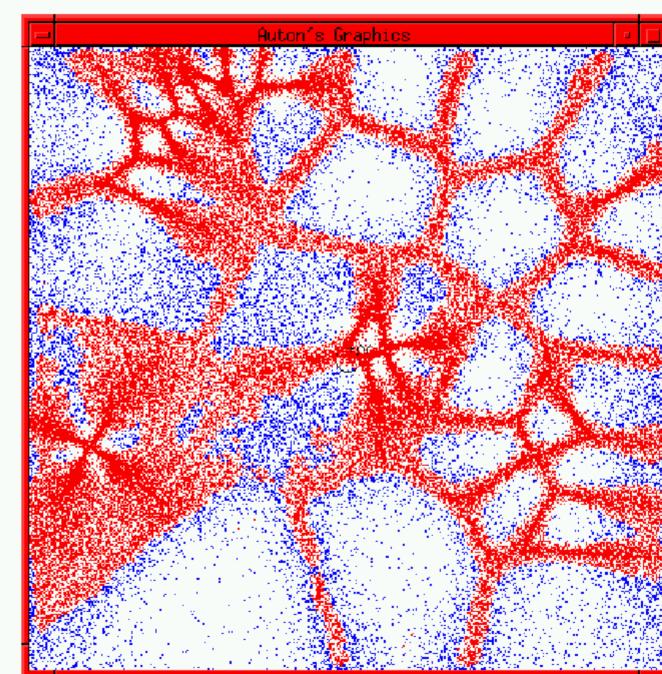
Many-component Mixture Models

Gaussian mixture model

Saussian mixture model says "I can see and estimate a great deal of structure" Gaussian mixture model says "It's a big old lump"

Spatial Anomaly Detection

- Red dots are in a crowded neighborhood.
- Blue dots are onely.



Many other "All-pairs" problems

- Locally weighted polynomial regression
- Gaussian processes
- Point processes
- Bottom-up clustering

"All-pairs of attributes" important too...

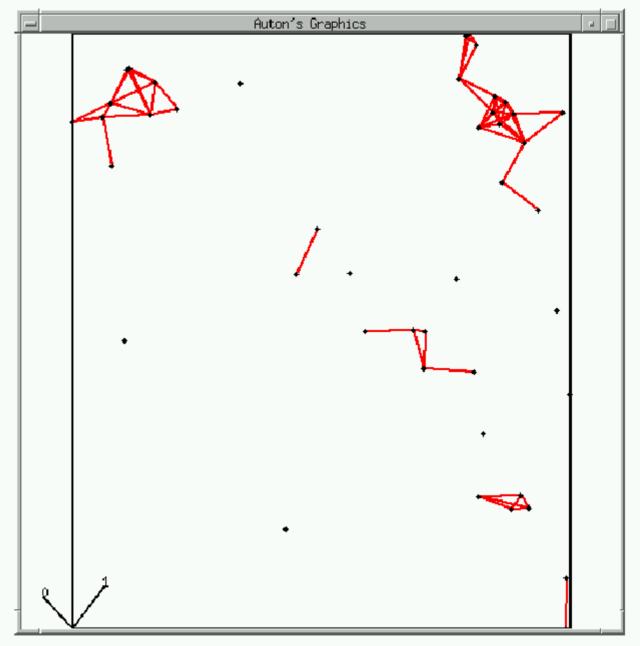
- Find me the most highly correlated pair of attributes.
- The most similar color-bands, image filters...

2-point correlation

...the purest form of an "all-pairs" problem.

> There are 62 pairs of points that lie within 0.1 units of each other:

..important in astrophysics for characterizing matter distribution.



Fast all-point-pairs: Idea One Use an O(n²) algorithm and buy a fast computer

Problem: $O(n^2)$ is vicious.

Comparative Results

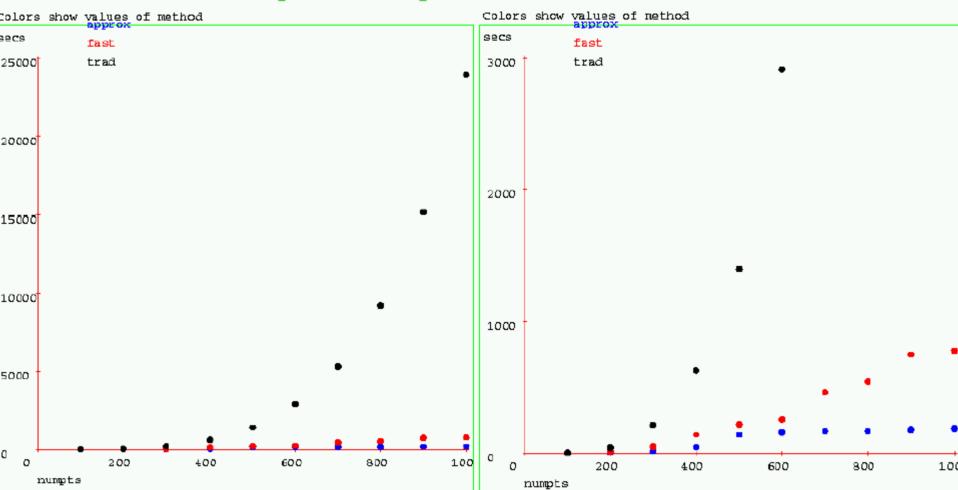
Non-approximate version

Number of Points	Quadratic time (secs)	Single-tree time (secs)	Dual-tree time (secs)	Single Tree Speedup	Dual Tree Speedup
10000	132	2.2	1.2	60	110
20000	528	4.8	2.8	110	189
50000	3300	11.8	7.0	280	471
150000	30899	37	20	835	1545
300000	123599	76	40	1626	3090

Approximate version (20,000 datapoints on slower machine):

3	0.001	0.01	0.02	0.05	0.1	0.2	0.5
secs	37	30	30	18	10	10	0.3

4-point performance



Black: Traditional 4-point Red: Fast Exact 4-point Blue: Fast Approx 4-pt

Closeup

Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

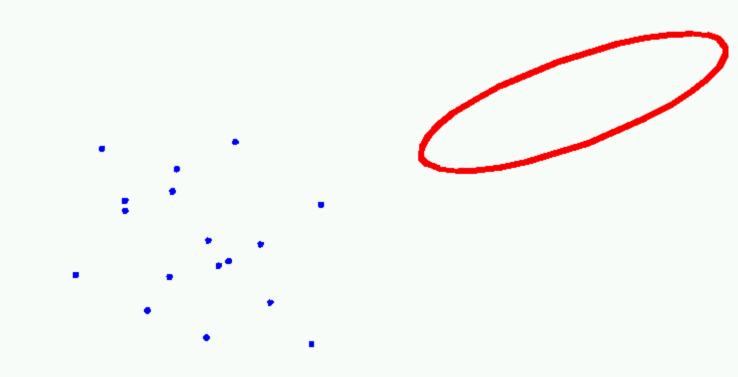
Data Structures for Fast Kmeans

The Auton Lab

Carnegie Mellon University

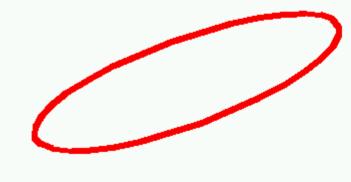
www.autonlab.org

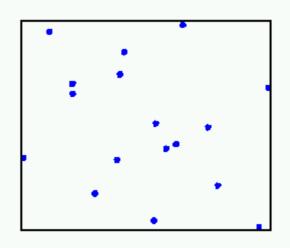
Computing likelihood of datapoints...



Suppose you want to compute the sum of log-likelihoods of all the blue dots given they'd been generated by the big red Gaussian.

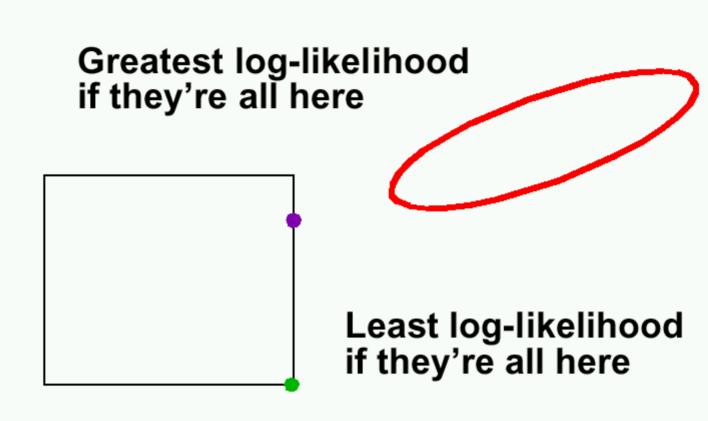
Computing likelihood of datapoints...





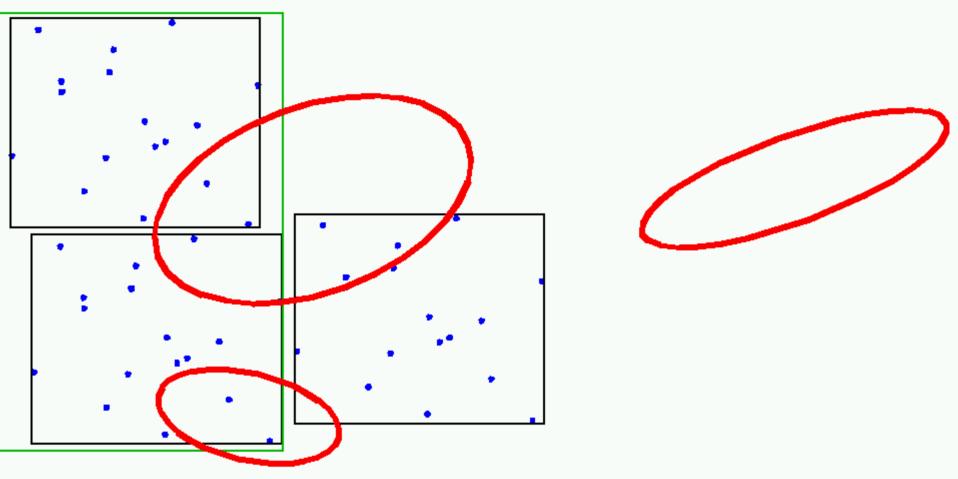
Suppose we happen to know their bounding box

Computing likelihood of datapoints...



Nithout visiting the points individually, we can put bounds on their contributions to the Gaussian. Sometimes those bounds'll be tight enough...

Many points, boxes, Gaussians...



Cached sufficient statistics

What I've shown you:

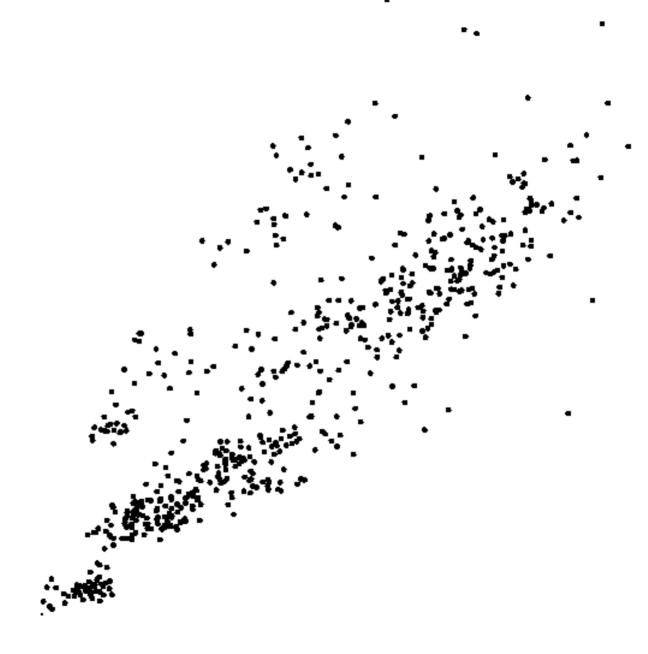
 It's intuitively possible to look at a node in a tree and decide whether in order to estimate the data loglikeihood you need to see more detail.

What I don't have time to show you

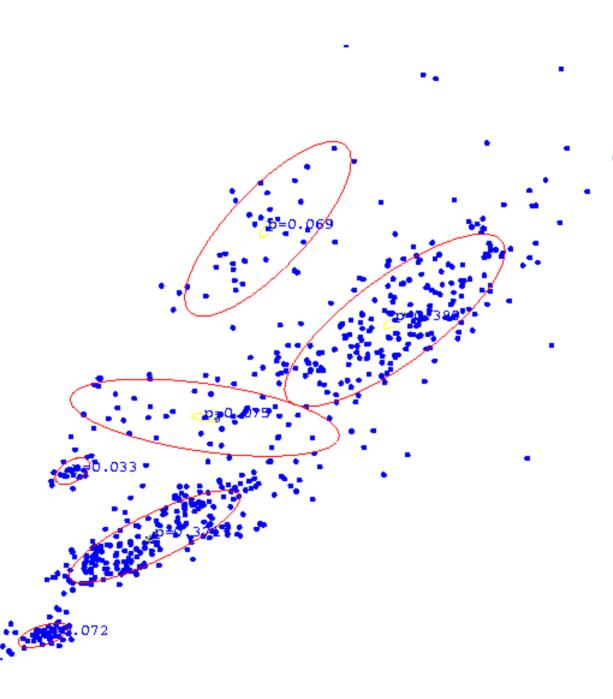
- Why you must also cache information other than the bounding box in every single kdtree node:
 - The centroid of all points it owns.
 - The covariance of all points.
- Each algorithm plays different tricks with these kinds of bounds
- Same principal as Barnes Hut and Greengard but sometimes tricker.

Moore and Johnson 1993, Deng and Moore 1995, Moore, Schneider and Deng 1997, Moore 999, Pelleg and Moore, 1999, Gordon and Moore, 2000)

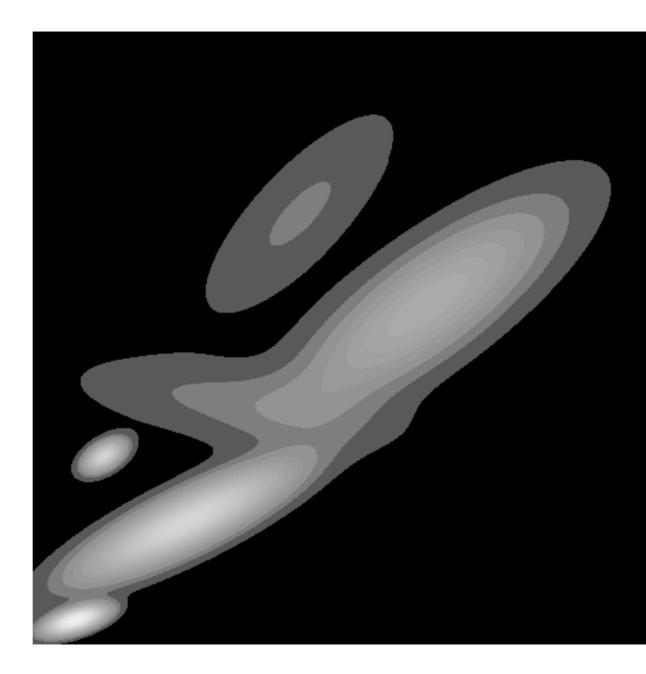
Some Bio Assay data



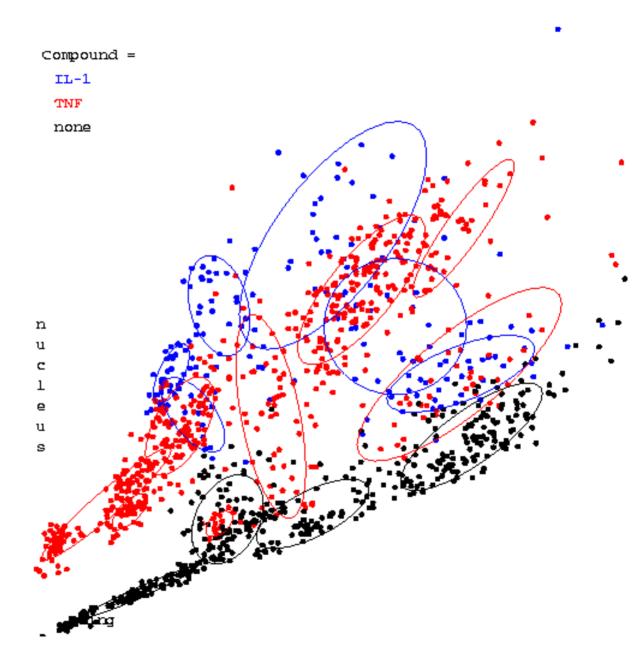
GMM clustering of the assay data



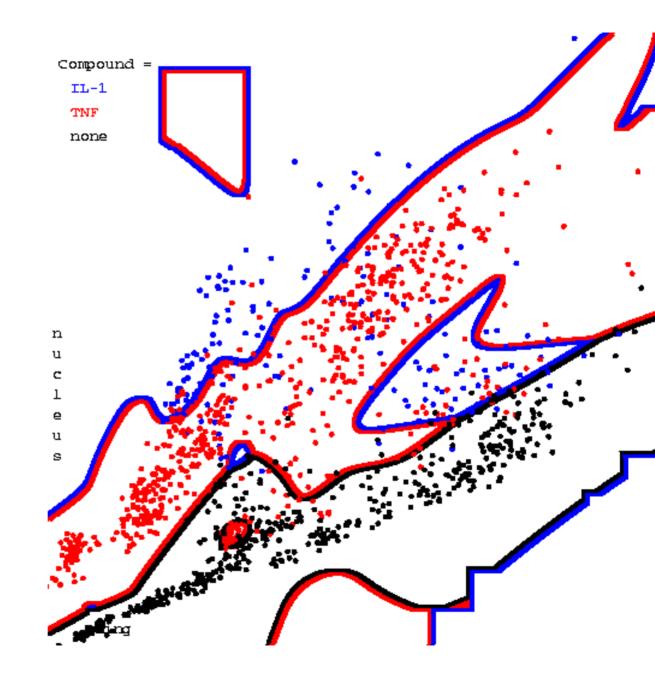
Resulting Density Estimator



Three classes of assay (each learned with it's own mixture model) (Sorry, this will again be semiuseless in black and white)



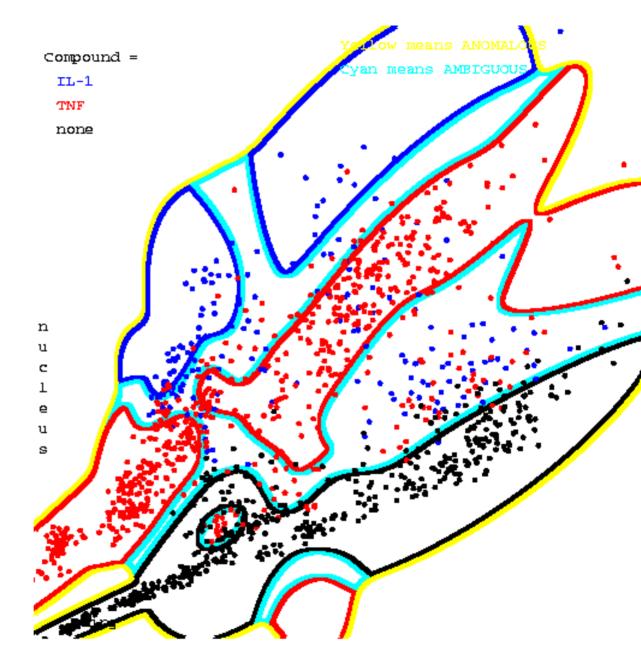
Resulting Bayes Classifier



Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness

> Yellow means anomalous

Cyan means ambiguous

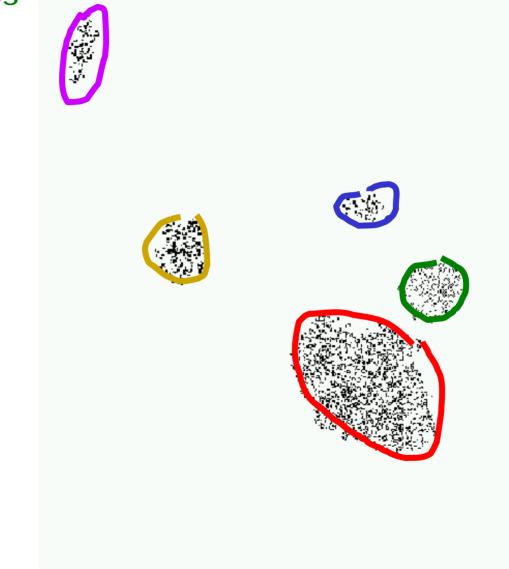


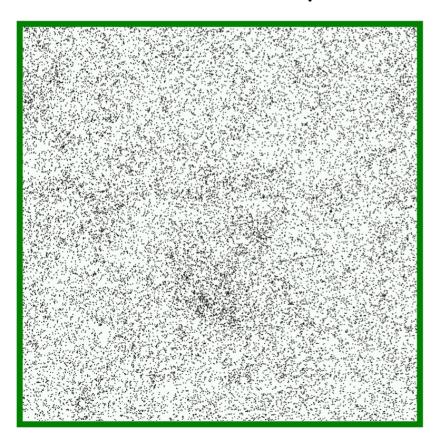
[Moore, 1999], [Pellg and Moore, 2002]

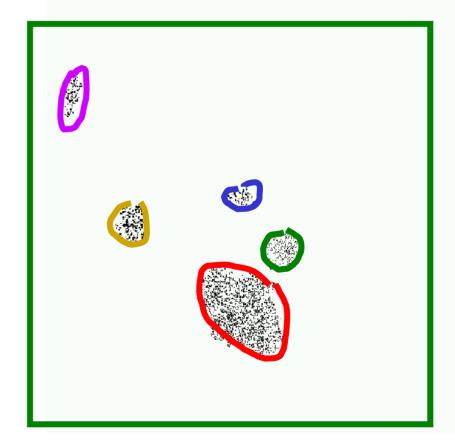
Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

Detecting overdensities

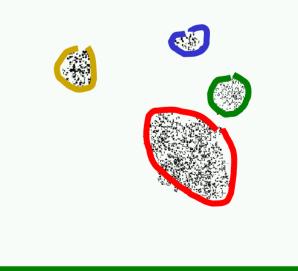
Detecting overdensities

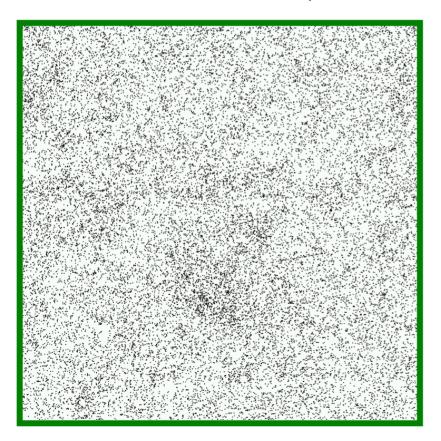


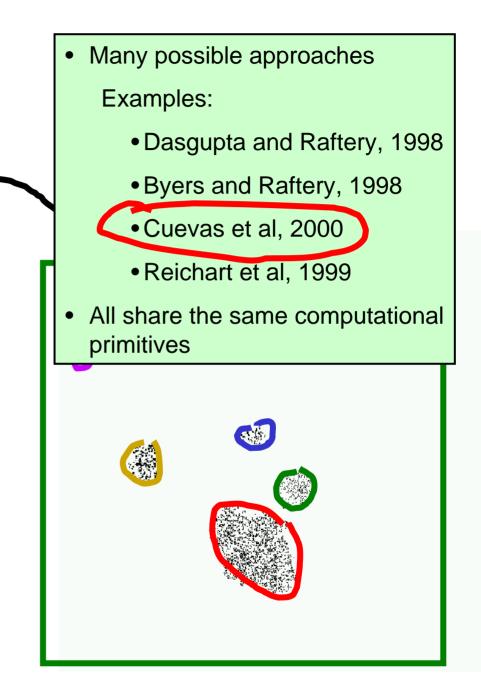


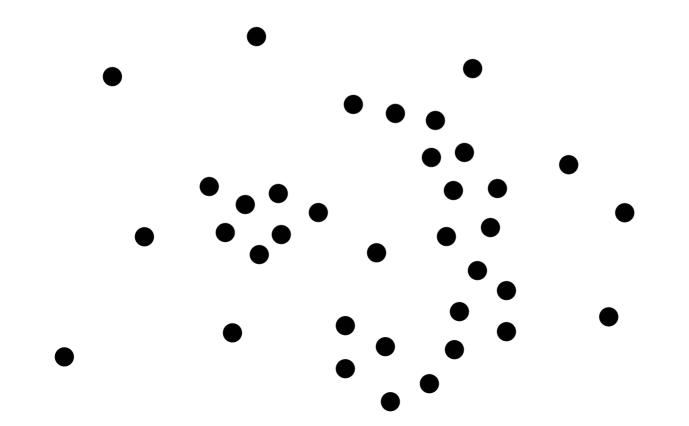


- Many possible approaches Examples:
 - Dasgupta and Raftery, 1998
 - Byers and Raftery, 1998
 - Cuevas et al, 2000
 - Reichart et al, 1999
- All share the same computational primitives

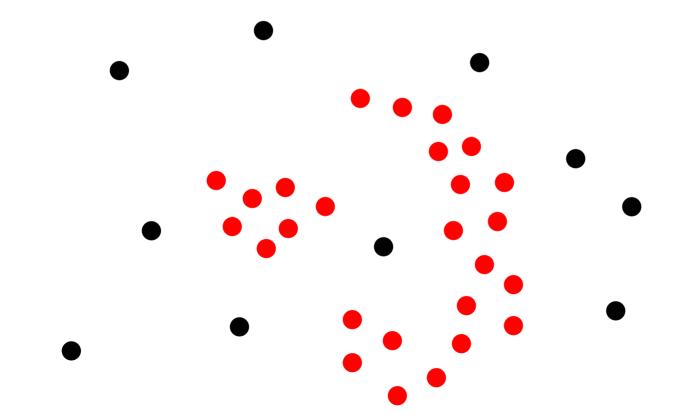




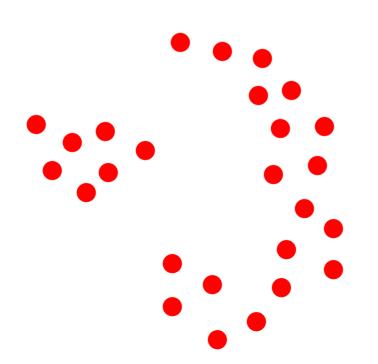




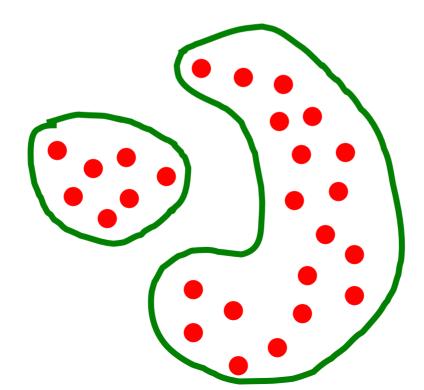
• Step One: Identify the high density points



- Step One: Identify the high density points
- Step Two: Delete the rest

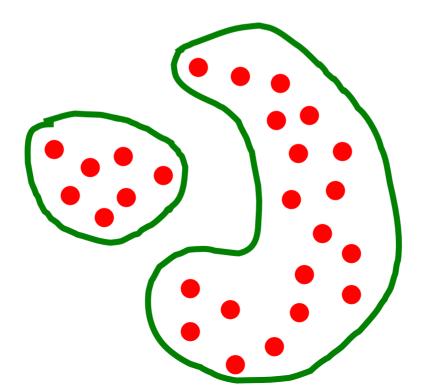


- Step One: Identify the high density points
- Step Two: Delete the rest
- Step Three: Find connected components

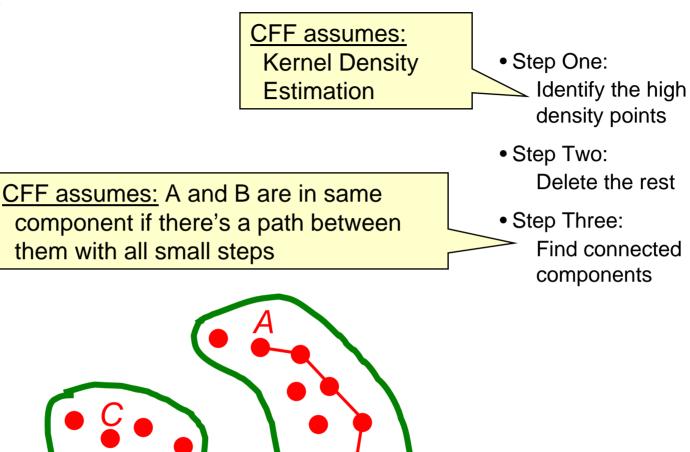


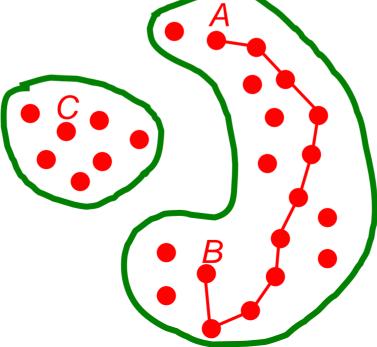
<u>CFF assumes:</u> Kernel Density Estimation

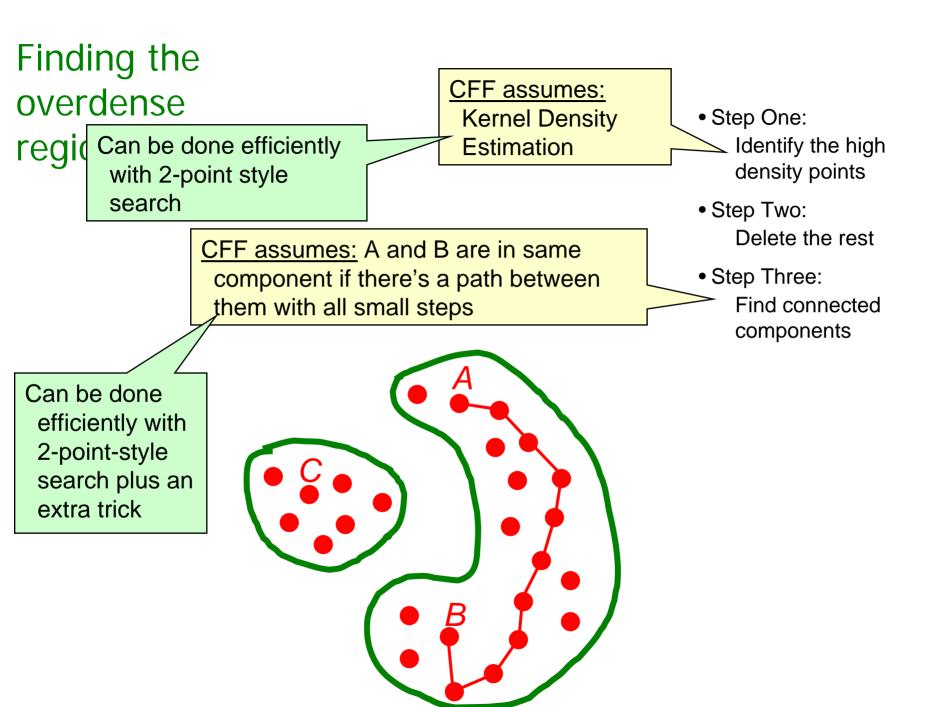
- Step One:
 Identify the high density points
- Step Two: Delete the rest
- Step Three: Find connected components



Finding the overdense regions

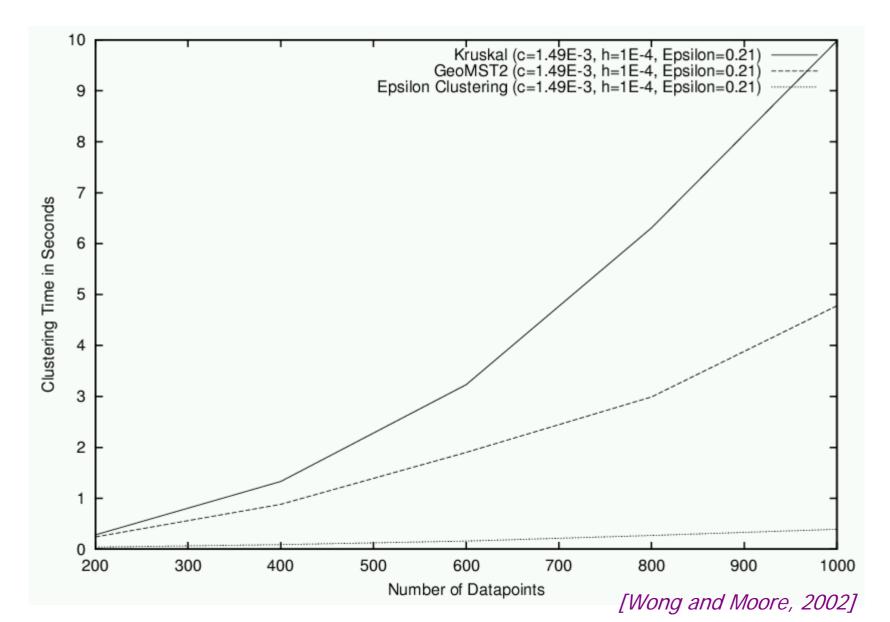






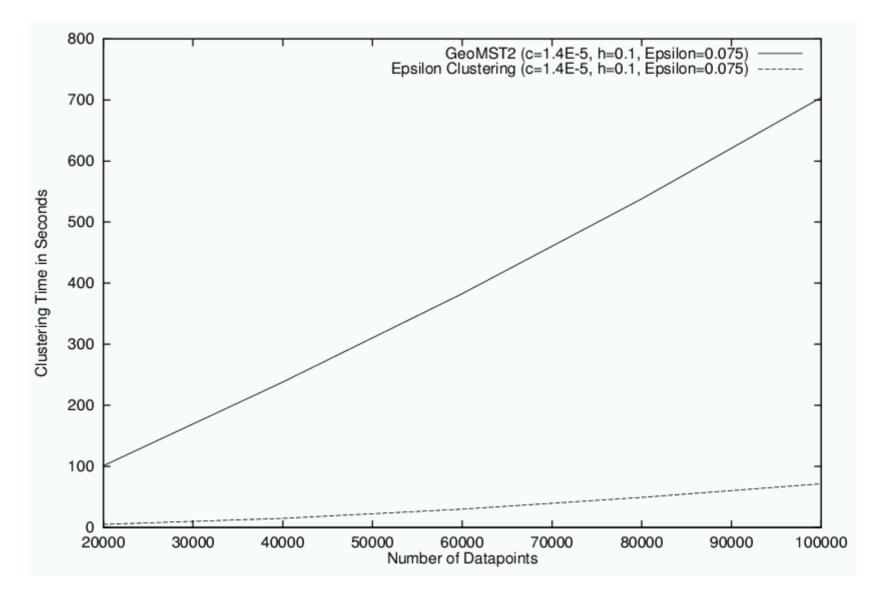
Results

4-dimensional Sloan Astrophysics color-space data



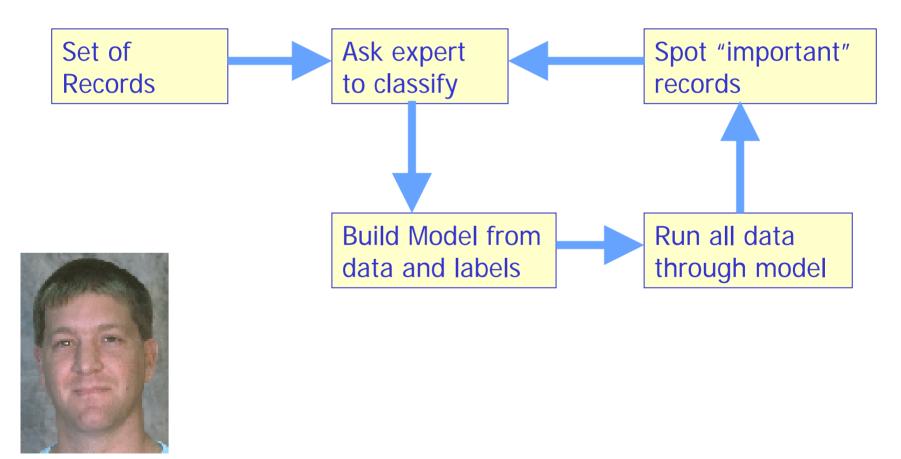
Results

4-dimensional Sloan Astrophysics color-space data



Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

Active Learning of Anomalies

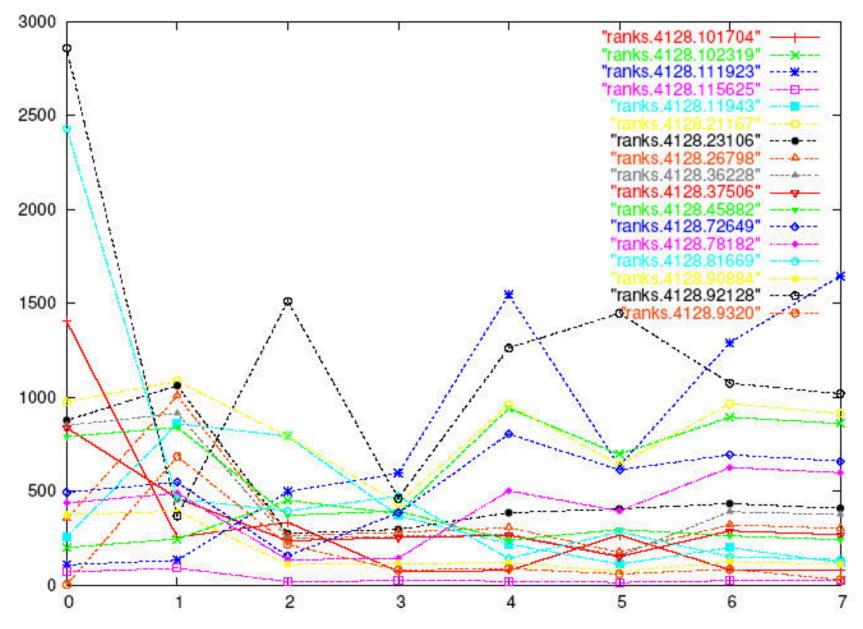


Dan Pelleg

[Pelleg, Moore and Connolly 2004]

Anomaly GUI

Anomaly Performance



Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

GMorph: Fast Galaxy Morphology

- How do you perform 10⁷ large nonlinear optimizations in practical time?
- How do you avoid local optima
- Idea: Pre-cache a "library" of solutions. Use efficient nearest neighbor to match new problems to library as seeds.

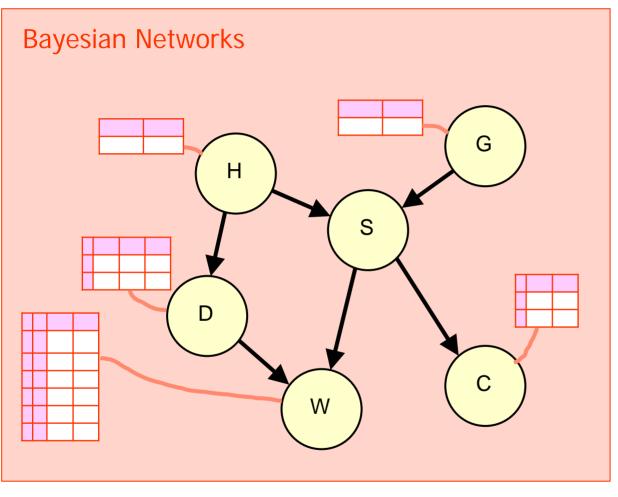
Brigham Anderson

• Early tests bring galaxy morphology fits down from minutes to sub-seconds

[Anderson, Bernardi, Connolly, Moore, Nichol, 2004]

Cached Sufficient Statistics Ball Trees (= Metric Trees) K-nearest neighbor with ball trees Very fast non-parametric classification skewed binary outputs General binary outputs multi-classed outputs Very fast kernel-based statistics n-point computations clustering non-parametric clustering (overdensity hunting) Active learning for anomaly hunting GMorph: Efficient Galaxy morphology fitting Other Auton topics

Other Relevant Auton Topics



[Moore and Lee, 1998], [Moore and Wong, 2003]

Other Relevant Auton Topics

Bayesian Networks



Weng-Keen Wong

[Wong, Moore, Cooper and Wagner 2003]

Other Relevant Auton Topics

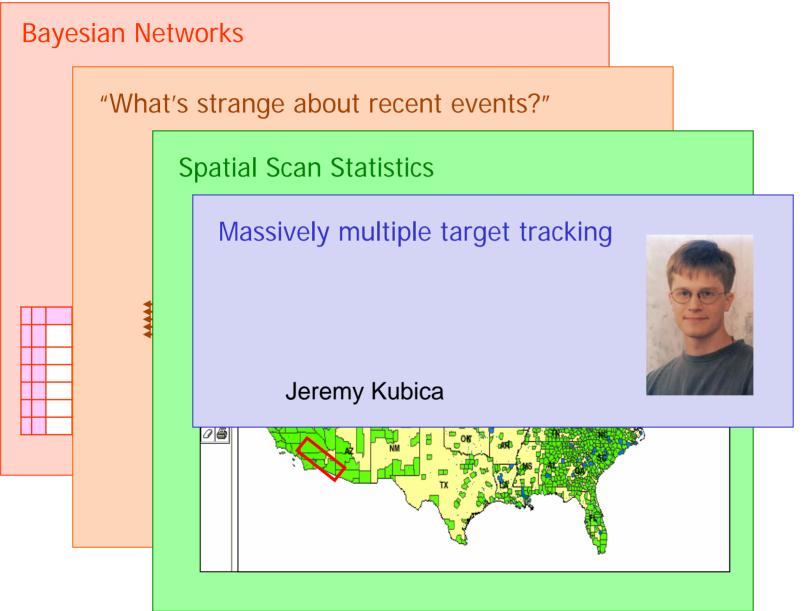
Bayesian Networks

"What's strange about recent events?"

Spatial Scan Statistics

Daniel Neill

[Neill, Moore and Wagner, 2004]



Conclusions

- Geometry can help tractability of Massive Statistical Data Analysis
- Cached sufficient statistics are one approach

• Papers, tutorials, software, examples:

www.autonlab.org