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Big Astrophysics Automated Science

Intelligence Data

Big Noisy Data-
base of Links

There must be
something useful
here... but I'm
drowning in noise

Big Noisy Data-
base of Links

This is more
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Autonomous self-
tweaking engines

Record # 456621

Doe and Smith
were booked in
the same hotel
on 3/6/93

Potential coll-aborators
of Doe:

The pattern of travel
among the group
consisting of (Doe,
Smith, Jones, Moore)
during 93-96 can’t be
explained by
coincidence




B> Cached Sufficient Statistics

Kd-trees and Ball Trees

K-nearest neighbor with ball trees
Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs

Very fast kernel-based statistics
n-point computations
clustering

non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics
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Data Analysis: The old days

Question

Size Ellipticity Color
23 0.96 Red
33 0.55 Red
36 Green
40

20

48




Data Analysis: The new days

1,000 columns

Question
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I Seventeen

months later...

100,000,000 rows




Cached Sufficient Statistics

1,000 columns
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Cached Sufficient Statistics
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Kd-trees

 Friedman, Bentley and Finkel, 1977
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Kd-trees
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 Callahan and Kosaraju, 1993
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Cached Sufficient Statistics
Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees
Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs
Very fast kernel-based statistics
n-point computations
clustering

non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics



Structure of kdtrees

| Auton's Graphics

In memory...

I contain 300 points
and have center of
mass (55,52) and
covariance...
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—-45 1965




Structure of of kdtrees

[SIEIES

In memory...

I contain 130 points

and have center of

mass (23,49) and
covariance...

I contain 170 points

and have center of

mass (73,58) and
covariance...

754 124
124 1965

654 24
24 1885




| Auton's Graphics

Structure of of kdtrees

In memory...



| Auton's Graphics

Structure of of kdtrees

In memory...
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Structure of of kdtrees

In memory...
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A Set of Points
IN a metric
space



Ball Tree root
node
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/ A Ball Tree
|
Q \k

N/
JLN A

«J. Uhlmann, 1991
eS. Omohundro, NIPS 1991



Ball-trees: properties

Let Q be any query point and let x be a
point inside ball B

IX-Q| > | © - B.center| - B.radius
IX-O| < | Q- B.center| + B.radius

nter




Cached Sufficient Statistics
Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees
Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs
Very fast kernel-based statistics
n-point computations
clustering

non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics



Goal: Find out
the 2-nearest
neighbors of Q.

«J. Uhlmann, 1991
eS. Omohundro, NIPS 1991
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- \
J We've hit a leaf
s b3 node, so we

explicitly look at the
points in the node



Two nearest
neighbors found so
far are in pink

(remember we have
yet to search the
blue balls)
















































Cached Sufficient Statistics
Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees
Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs
Very fast kernel-based statistics
n-point computations
clustering

non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
Other Auton topics



KNS2

e Assume binary output

e Assume positive class Is much less frequent
than negative class

e Assume we want more than a
“positive/negative” prediction: we want to
know exactly how many of the K-NN are
from the +ve class

KNS2 does this without finding the K-NN



Assume we have a set
of data points.

Some are +ve points
(denoted =)

The large majority are
—ve points (denoted o)



Assume we have a set
) oo , Of data points.
Some are +ve points
" * _(denoted =)

Preprocessing: Put all /The vast majority are —

your +ve points in a :
small ball tree ve points (denoted o )

—

Preprocessing: Put all
your -ve points in a
separate large ball tree




Goal: Find out
how many of
the 5-nearest
neighbors of Q
are positive.



Step One: Find
the five nearest
+Vve points using
KNS1.

A

We're assuming there
are far fewer +ves
than —ves so this Is
not the dominant cost.




Step 2: Search the
ball-tree of —ve
points starting at
the root.




- . +

By the end of the search this
will contain number of negative

points closer to query than Search the ball-
closest +ve point tree of —ve
. + _ _
> points starting
at the root.




- e +

By the end of the search this
will contain number of negative

points closer to query than Search the ball-
closest +ve point tree of —ve

+
By the end of the search this will INts Startmg

contain number of negative | the root.
points whose distance to query is
between distances of closest +ve
point and 2" closest +ve point




— B +

will contain number of negative

_ By the end of the search this will
By the end of the search this \ contain number of negative points
whose distance to query is between

points closer to query than distances of 2" closest +ve point and a”'

closest +ve point

, - )

By the end of the searg
contain number of

y points whose distance

between distances of

+ point and 2"9 close

3" closest +ve point

/Abb Ul \"AA

By the end of the search this will

contain number of negative points
whose distance to query is between
distances of 3" closest +ve point and

4t closest +ve point

S}
point /
By the end of the
search this will
contain number of
negative points
whose distance to
guery is between
distances of 4t
closest +ve point
+ and 5% closest

S +ve point




- i +

_ By the end of the search this will
By the end of the search this contain number of negative points

will contain number of negative whose distance to que - X
oints closer to query th distances
P d N Q\UGW‘
Close t’tO 5N CC Ul A
 if relevat +\/ /
gut of By the end of the search this will
By the end of the searg contain number of negative points
contain number of se distance to query is between

pomts whose di o £ NN queW

n
But or\\\j if releve

e point

By the end of the
search this will
contain number of

istances of 4th
closest +ve point
and 5t closest
— —_ — —— — +ve point




Search the ball-
tree of —ve
points starting
at the root.













...and there are eight
points in the ball







Distance from Q to 4"-
- closest +ve point

_+_+_+_+x



...and there are eight
Q points in the ball

Distance from Q to 4"-
- closest +ve point

_+_+_+_+x


















...and there are six

points in the ball
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/_ ...and there are six

points in the ball













NO prune.



NO prune.

; . Ball is leaf
K) \J so explore

Its points

— ]




=+

~~ N

| contain exactly one point closer
than the 1st closest +ve point (says
the Ball)

NO prune.

Ball Is leaf
so explore
Its points



Return and
try other
sibling
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| can’t possibly
have any
Interesting points

Return and
try other
sibling
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| can’t possibly
have any
Interesting points




| can’t possibly
have any
Interesting points




i We're done



We're done

There’s one —ve point
closer than the closest
+Vve point.

There are more than 3
—ve points closer than

N * the 2" closest +ve
point.

=> Exactly 1 of the 5
nearest neighbors is
+ve

ST
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Balls visited



Another
example



Experimental results

Dataset Num. of | Num. of Num.of | Num.pos/Num.neg
records | Dimensions | positive

dsl 26733 6348 804 .03

ds1.10pca 26733 10 804 .03

ds1.100pca 26733 100 804 (.03

ds2 88358 1.1 x 10° 211 (.002

ds2.100anchor 88338 100 211 (0.002

J Lee. 100pca | 181395 100 299 (0.0017

Blanc__Mel 186414 | 10 824 (.004

Dataset Num. Num. of Num.of | Num.pos/Num.neg
records | Dimensions | positive

Letter 20000 16 790 0.04

Ipums TO187 60 119 0.0017

Movie 38943 62 7620 0.24

Kdd99( 10% )y 494021 | 176 97278 0.24




100-
80-
60-
40-
20-

AL

dsl ds2 J Lee Blanc letter Movie

Num of Distance computations

Speedup for K-NN

<]

E Naive
B KNS1
[0 KNS2
0 KNS3

|Blipl




707
60+
50+
40+
30+
20+
101

Wall-clock-time speedup for k-NN

dsl

ds2 J Lee Blanc letter Movie

@ Nalve
B KNS1
O KNS2
0 KNS3




MNAIVE KEMNS1 KMNS2 KMNS3
chsis i dists e lisls e dists Hime
{BECE) Ay specdup | specdup specdup | speedup specdup
icleal k=% Q.0 LY 30 e, T 50.5 1129 TR.5 <3 5(np AR8H
k=101 23,0 n.2 24,7 14,7 35D g32
Diag2dd 105 k=9 Q.0x ¥ 30 " | 51.1 RH.2 524 2Rz 27.1
k=101 22.3 R7 2L3 0.3 16579 15.9
Diag2d k=49 0.0 x 1P 440 T3R 306 el 372 2503 287
k=101 2029 g 191 107.5 2062 287
Diagid k=1 Q.0 P Byt 36l 184.5 206 155 (150 1765
k=101 111 56.4 05,6 AR50 5KH5 TR.1
Diag 101 k=1 9.0x P R 7.1 53 7.3 52 127 2.2
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All-pairs-of-points problems in statistics
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iViany otner All-palrs probiems

* Locally weighted polynomial regression
 Gaussian processes
 Point processes

 Bottom-up clustering

“All-pairs of attributes” important too...

 Find me the most highly correlated pair of attributes.

* The most similar color-bands, image filters...



=-point correiation

...the purest form
of an “all-pairs”
problem.

There are 62
pairs of

points that lie
within 0.1

units of each
other:

..important in
astrophysics for
characterizing
matter
distribution.

—

Auton’s Graphics




rast all-point-pairs. iadea vne

Use an o(n?) algorithm and buy a fast
computer

>roblem: O(n?) is vicious.



comparative Resulits

Non-approximate version

Number of Quadratic Single-tree Dual-tree Single Tree Dual Tree
Points time (secs) | time (secs) | time (secs) Speedup Speedup
10000 132 2.2 1.2 60 110
20000 528 4.8 2.8 110 189
50000 3300 11.8 7.0 280 471
150000 30899 37 20 835 1545
300000 123599 |76 40 1626 3090

Approximate version (20,000 datapoints on slower machine):

e [0.001

SECS

0.01

0.02

0.05

0.1

0.20.




4-point perrormance
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Data Structures for Fast K-
means

The Auton Lab

Carnegie Mellon University

&

www.autonlab.org



http://www.autonlab.org/autonweb/index.jsp

computing lIKellnooad orT datapolints...

Suppose you want to compute the sum of log-likelihoods of
ll the blue dots given they’d been generated by the big red
saussian.



computing liKellinooad OoT datapolints...

Suppose we happen to know their bounding box



computing liKkelinood oT aatapoints...

Greatest log-likelihood
if they’re all here

Least log-likelihood
if they’re all here

Nithout visiting the points individually, we can put bounds
yn their contributions to the Gaussian. Sometimes those
younds’ll be tight enough...



iviany points, noxes, Gaussians...
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f you play this game on a large scale, you find yourself doing
cernel densities, locally weighted regression, locally
veighted PCA, adaptive kernels, k-means clustering, snake-

yased filament tracing, hierarchical classification.....
............ verv verv verv fast




vdcned surricient statistics

Nhat I’'ve shown you:

* It’s intuitively possible to look at a node in a tree and
decide whether in order to estimate the data loglikeihood
you need to see more detail.

Vhat | don’t have time to show you

* Why you must also cache information other than the
bounding box in every single kdtree node:
* The centroid of all points it owns.

* The covariance of all points.

 Each algorithm plays different tricks with these kinds of
bounds

 Same principal as Barnes Hut and Greengard but
sometimes tricker.

Moore and Johnson 1993, Deng and Moore 1995, Moore, Schneider and Deng 1997, Moore
Qa0 DPallam amnd Mamsras 4000 Cardars and MMamsrs 200000



Some BIo

Assay data



GMM
clustering
of the
assay data




Resulting
Density
Estimator

r 4




Three
classes of
assay

(each learned with it's

own mixture model)

(Sorry, this will again be semi-
useless in black and white)

Compourd =
I1..-1




Resulting
Bayes
Classifier




Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

[Moore, 1999], [Pellg and Moore, 2002]
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Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees
Very fast non-parametric classification
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hunting)
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Detecting
overdensities:
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Finding the
overdense
regions

« Many possible approaches

Examples:
* Dasgupta and Raftery, 1998
* Byers and Raftery, 1998
e Cuevas et al, 2000
* Reichart et al, 1999

» All share the same computational
primitives

—




Finding the
overdense
regions

« Many possible approaches
Examples:

* Dasgupta and Raftery, 1998

* Byers and Raftery, 1998

» Cuevas et al, 2000

* Reichart et al, 1999

» All share the same computational
primitives

—




Finding the
overdense
regions




Finding the

overdense * Step One:
regions Identify the high
density points
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Finding the
overdense * Step One:
regions identify the high

density points

» Step Two:
Delete the rest




Finding the
overdense
regions

» Step One:

Identify the high
density points

» Step Two:
Delete the rest

» Step Three:

Find connected
components



Finding the

CEF assumes:
overdense Kernel Density * Step One:
regions Estimation identify the high

density points

» Step Two:
Delete the rest

» Step Three:

Find connected
components




Finding the
overdense
regions

CFF assumes:
Kernel Density
Estimation

CFF assumes: A and B are in same

component if there’s a path between
them with all small steps

» Step One:
|dentify the high
density points

» Step Two:
Delete the rest

» Step Three:

Find connected
components



Finding the
overdense

search

regi( Can be done efficiently
with 2-point style K

I

CFF assumes:
Kernel Density « Step One:

[ Estimation Identify the high

density points

» Step Two:

Can be done
efficiently with
2-point-style
search plus an
extra trick

CFF assumes: A and B are in same

Delete the rest

component if there’s a path between * Step Three:

hem with all small steps Find connected
Z components




Clustering Time in Seconds

10

Results 4-dimensional Sloan

Astrophysics color-space data
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umber atapoinis [Wong and MOOfe, 2002]



Clustering Time in Seconds

Results 4-dimensional Sloan

Astrophysics color-space data

800 I I |
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Active Learning of Anomalies

Set of _> Ask expert 4_ Spot “important”

Records to classify records

Build Model from _’ Run all data
data and labels through model

Dan Pelleg
[Pelleg, Moore and Connolly 2004]



Anomaly GUI
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GMorph: Fast Galaxy Morphology

How do you perform 107 large
nonlinear optimizations in practical
time?

How do you avoid local optima

Idea: Pre-cache a “library” of solutions.

Use efficient nearest neighbor to Brigham
match new problems to library as Anderson
seeds.

Early tests bring galaxy morphology
fits down from minutes to sub-seconds

[Anderson, Bernardi, Connolly, Moore, Nichol, 2004]



Cached Sufficient Statistics
Ball Trees (= Metric Trees)
K-nearest neighbor with ball trees
Very fast non-parametric classification
skewed binary outputs
General binary outputs
multi-classed outputs
Very fast kernel-based statistics
n-point computations
clustering

non-parametric clustering (overdensity
hunting)

Active learning for anomaly hunting
GMorph: Efficient Galaxy morphology fitting
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Other Relevant Auton Topics

Bayesian Networks

[Moore and Lee, 1998], [Moore and Wong, 2003]



Other Relevant Auton Topics

Bayesian Networks

“What's strange about recent events?”

Weng-Keen
Wong

[Wong, Moore, Cooper and Wagner 2003]



Other Relevant Auton Topics

Bayesian Networks

“What's strange about recent events?”

Spatial Scan Statistics

“ Epiplot ~ < Mapplot < Help < Contact

JVVYVVY

ta |

S
4+

Daniel Neill

So | A1(ERD) 2= | @ | 1| =p || 0|55
5 &= Z 20

M| 3| =

[Nelll_ Moore and Wagner, 2004]



Other Relevant Auton Topics

Bayesian Networks

“What's strange about recent events?”

Spatial Scan Statistics

Massively multiple target tracking

Jeremy Kubica

ol WFS




Conclusions

e Geometry can help tractability of
Massive Statistical Data Analysis

e Cached sufficient statistics are one
approach

e Papers, tutorials, software, examples:

www.autonlab.org
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