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Raw and Reduced Data

• Raw data formats depend on the waveband
– Radio – complex visibilities in u-v plane
– IR/optical – CCD frames
– X-ray/Gamma-ray – photon event lists.

• Data reduction requires specialised software, little 
scope for generalised data mining tools.

• Reduced data much more homogeneous:
– Source lists – tables of numbers
– Spectra – tables of numbers
– Light-curves (time-series) – tables of numbers.

• Tabular datasets are probably the most important 
form of data for data exploration and mining – but 
tools lacking. 2



Astronomical Data Deluge
We hear much about the astronomical data deluge (tidal 

wave, tsunami, avalanche, …) which arises from:
• Growing importance of sky surveys (WFCAM, VISTA)
• Use of large-format detectors (OmegaCAM, MegaCAM) 
• Interest in high-time resolution data (SWIFT, 

SuperWASP)
• Lots of new facilities: XMM-Newton, Chandra, 

INTEGRAL, eMERLIN, GAIA, ALMA, Planck, Eddington, 
JWST, XEUS…

• Much of the expansion is still to come
– Source catalogues have up to 109 rows, the largest tables we 

have, but many of these come from old technology - scans of 
photographic plates dating back to the 1950s.
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Examples of Source Catalogues

SDSS DR3 has around 1 Terabyte of tabular data.
Note that tables are growing not only longer, also wider:

Table Number of Columns
USNO-B catalog 50

2MASS point sources 61

1XMM source catalogue 379

SDSS DR3 PhotObjAll 446
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It’s all the fault of Moore’s Law
Can we keep up?

• Astronomical data volume – doubling maybe every 2 
years. 

• Processor power – doubling every 2 years or less.
• Disc storage per unit cost – doubling every 2 years or 

less. 

So we can process and store the data.   

• I/O bandwidth and disc seek times are improving much 
more slowly (~10% per year)

Hence: I/O more of a bottleneck – avoid if at all possible. 5



Storing and Retrieving Tabular Data

• Relational DBMS
– Designed for large tabular datasets.

• Object-oriented DBMS
– Support complex structures, and can avoid joins by merely 

following links through the schema.
– But: astronomical users have mostly had their fingers burned.

• Statistical packages (SAS, SPSS, MINITAB, BDMP, 
MATLAB, S-PLUS, etc.)
– Designed to handle datasets which fit in memory

• Data visualisation packages (IDL, PVWave, AVS, etc.)
– Limited scalability: designed for millions, not billions.
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Nine out of Ten Archives use RDBMS

• Can handle large datasets, well beyond the 2 GB boundary of 
32-bit filing systems.

• Can use index for fast searching (find any row in ~30 ms)
• Have SQL - a powerful query language.
• Can handle null (missing) values properly (3-way logic)
• Mature technology with reliable software products.
• Cheap, because Open Source products like MySQL and 

Postgres are generally “good enough” for data archives.
• But: sequential scans are slow, because tables are invariably 

stored row-wise, because
– Row-based storage makes transactions efficient.
– Lots of other features mis-matched to needs of astronomy.
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And the tenth?
• Some home-grown database software is still in use:

– BROWSE from ESOC/ESTEC –
• originated at ESOC in 1970s, written in Fortran66.
• used by several astronomical data archives, and in 

a few recent papers 
• being phased out by archives as hard to support.

– WCStools from Harvard-Smithsonian CfA
• used by many archive sites as it supports fairly 

efficient cone-searches etc.
– SIMBAD at CDS (Strasbourg)

• the world’s most comprehensive astronomical 
bibliographical database 

• was written in-house.
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What should a data explorer package support?
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• Basic database operations: select subsets, compute 
new columns, sort, group, equi-joins with other tables.
– RDBMS does these fairly well.

• Statistical operations: find means, medians and other 
quantiles, find outliers, compute regressions, etc.
– RDBMS can do simpler operations at least. 

• Cross-matching: spatial join - needs spatial indexing
– Some RDBMS can do this, but not all.

• Graphics and visualisation: histograms, scatter-plots, 
image overlays, density maps, multi-dimensional 
plots, etc. 
– Nearly all beyond the scope of RDBMS.

• Advanced mining algorithms (clustering, classification, 
etc)
– Cannot do in RDBMS - data have to be exported.



Main Types of Query

• Indexed: 
– Fast: typically 20 to 30 milliseconds to select row.

• Sequential scans:
– Slow: may take 30 to 60 minutes to scan a large table 

• Combined - involving scanning and indexed access –
e.g. joins.
– Also slow, depending on the table sizes.
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Main Types of Query

• Indexed: 
– Fast: typically 20 to 30 milliseconds to select row.

• Sequential scans:
– Slow: may take 30 to 60 minutes to scan a large table 

• Combined - involving scanning and indexed access –
e.g. joins.
– Also slow, depending on the table sizes.

Hence: avoid sequential scans if at all possible.  
Unfortunately it isn’t always possible.
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Queries which usually involve a 
sequential scan:

• CREATE INDEX (obviously)
• Create/populate a new column, e.g.

– UPDATE table SET column = expression;

• SELECT * FROM table WHERE (bmag-vmag) > 0.5
– Column index won’t help selection on expression

• SELECT AVG(col) FROM table;
– Note: sampling to get approx answer often no faster. 

• Finding largest N or smallest N from some column
– DBMS usually do this by sorting.

• Joining one table with another (must scan smaller 
table)

• SELECT * FROM table WHERE ABS(glat) < 5.0;
– May not use index unless selectivity >1000, because random 

seeks so much slower than sequential reads.



Data exploration in practice

• Data mining must be preceded by data exploration: 
– Understanding the data and instrument characteristics
– Data cleaning – removing spurious values.
– Finding the optimum parameters by repeated trials.

• All these operations need to be done interactively, 
often using graphical methods.

• Astronomical data explorations will nearly always 
include some sequential scans.
– These will account for nearly all the elapsed time

Hence: need to speed up scans so they can be done 
interactively and do not require batch jobs – hugely 
more productive.
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Three ways to speed up sequential 
scans

• Data compression:
– gain of factor of ~2 easily
– Hard to implement while keeping indexed access.

• Parallel I/O e.g. using Beowulf cluster or similar:
– Many clusters available to astronomers.
– Large potential large gains in speed.
– Not yet adequately exploited for data mining.

• Column-oriented storage:
– Most queries only involve a few columns out of many, so this 

will greatly reduce I/O.
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The Story So Far

• Tables are getting longer and wider
• I/O is an increasingly serious bottleneck
• Queries which scan a whole table are an unavoidable 

part of any extensive data exploration process
• Most queries only involve a few columns out of dozens 

or hundreds in a typical astronomical table
• RDBMS use row-based storage which means the whole 

table has to be read from disc even if only a single 
column is accessed

• Column-based storage would be much more efficient for 
most queries, no less efficient for any archive query.
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Column-oriented Tables

Several existing examples:
• Sybase-IQ best known commercial product - from 

makers of Sybase-ASE relational database.  Fast, 
but:
– No Linux version yet
– No spatial indexing 
– Very expensive licence costs

• ESO/MIDAS table system
• STSDAS tabled (part of IRAF written at STScI)
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Column-oriented table in FITS 

• FITS binary and ASCII tables are normally row-
orientated, but I managed to get column-based 
storage in two ways: 
1. Table of one row, but each field is a vector of length N 

(where N is the required number of  “rows”).
2. FITS file with one column per header-data-unit.

• Both of were handled well by the cFITSIO library,  
much faster as expected, but 
– cFITSIO library still has some 32-bit limits.
– Files conformed to letter but not spirit of Standard: 

incompatible with other FITS tools, so rather pointless to use  
FITS format. 

– High CPU overhead from need for byte swaps, and handling 
2880-byte blocks. 
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Hierarchical Data Format 5

• HDF5 has flexible structure, supports tables, arrays, 
groups of objects. 

• Comes from NCSA, well-supported library and tools.
• Compatible with Globus, GridFTP.
• Designed for efficient access to big files (no 2 GB 

limit).
• Simple API (bindings to C, Fortran90, Java, Python).
• Can attach unlimited metadata to tables and columns.
• Prototype using HDF5 was built and benchmarked:

– Used query parser and evaluator originally written for 
Starlink’s CURSA about 1992.

– A sample of 2MASS (~10% of full catalogue) ingested into 
HDF5 column-based format. 18



Performance Gain
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mysql> select count(phi_opt),min(phi_opt),max(phi_opt),avg(phi_opt) from 
twomass;

+----------------+--------------+--------------+--------------+
| count(phi_opt) | min(phi_opt) | max(phi_opt) | avg(phi_opt) |
+----------------+--------------+--------------+--------------+
|       33971487 |            0 |          360 |     195.9702 |
+----------------+--------------+--------------+--------------+
1 row in set (4 min 30.73 sec)

hydra:~/hdf> hstats phi_opt
--Column-- points minimum     maximum     average

phi_opt 33971487  0.0000      360.00      195.97    
8.37 seconds

32 times faster than MySQL, other tests show gains 13 to 400.
hydra:~/hdf> hstats phi_opt
--Column-- points minimum     maximum     average

phi_opt 33971487  0.0000      360.00      195.97    
3.51 seconds

Even faster when results in disc cache.



How to build an HDF5-based data explorer
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• HDF5 library – reliable, efficient, easy to use, allows 
unlimited metadata to be attached to column or table.

• Query parser and evaluator – CURSA, or JEL (Java)
• Graphics package – great variety of them available
• Statistics routines – many available
• Indexing – many B-tree libraries available
• Spatial indexing – free R-tree code exists, or use 

pixel-code methods (based on HTM or HEALpix) 
• Integration with VO for authentication, MySPACE, etc.
• Provide as stand-alone package, and as a Web 

Service.
• User interface – allowing iterative filtering, undo, etc.

– Probably the most difficult part of the design.



Additional Advantages

• Makes distributed cross-match more feasible: 
– only transfer (ra, dec, err) columns across the network. 

• Simple API so users with their own data mining code 
(clustering, classification, etc) can read HDF5 datasets 
directly. 

• Data explorer can easily access astronomical tables in 
other formats such as FITS, VOTable, CSV, or (using 
JDBC) tables within other DBMS. 

• Can provide user with integrated graphics, statistics, etc. 
and a host of other desirable features missing from 
commercial RDBMS.
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Data explorer complements RDBMS

Appears to be feasible
• would speed up many slow data operations by 10 to 100 

times,
• would overcome all the problems of the RDBMS

The HDF5-based data explorer is not intended to replace
the existing DBMS-based archives but to supplement
them

Cost of using both is mainly that of using twice as much 
disc space – no longer an expensive commodity.
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The Data Deluge Revisited 

From the introduction to the AstroGrid-1 Grant Application:

A tidal wave of data is approaching astronomy, 
requiring radical new approaches to database 
construction, management, and utilisation.
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