
Exploring Tabular Datasets

Clive Page
University of Leicester.

cgp@star.le.ac.uk

SC4DEVO: 2004 December 2

1

Raw and Reduced Data

• Raw data formats depend on the waveband
– Radio – complex visibilities in u-v plane
– IR/optical – CCD frames
– X-ray/Gamma-ray – photon event lists.

• Data reduction requires specialised software, little
scope for generalised data mining tools.

• Reduced data much more homogeneous:
– Source lists – tables of numbers
– Spectra – tables of numbers
– Light-curves (time-series) – tables of numbers.

• Tabular datasets are probably the most important
form of data for data exploration and mining – but
tools lacking. 2

Astronomical Data Deluge
We hear much about the astronomical data deluge (tidal

wave, tsunami, avalanche, …) which arises from:
• Growing importance of sky surveys (WFCAM, VISTA)
• Use of large-format detectors (OmegaCAM, MegaCAM)
• Interest in high-time resolution data (SWIFT,

SuperWASP)
• Lots of new facilities: XMM-Newton, Chandra,

INTEGRAL, eMERLIN, GAIA, ALMA, Planck, Eddington,
JWST, XEUS…

• Much of the expansion is still to come
– Source catalogues have up to 109 rows, the largest tables we

have, but many of these come from old technology - scans of
photographic plates dating back to the 1950s.

3

Examples of Source Catalogues

SDSS DR3 has around 1 Terabyte of tabular data.
Note that tables are growing not only longer, also wider:

Table Number of Columns
USNO-B catalog 50

2MASS point sources 61

1XMM source catalogue 379

SDSS DR3 PhotObjAll 446

4

It’s all the fault of Moore’s Law
Can we keep up?

• Astronomical data volume – doubling maybe every 2
years.

• Processor power – doubling every 2 years or less.
• Disc storage per unit cost – doubling every 2 years or

less.

So we can process and store the data.

• I/O bandwidth and disc seek times are improving much
more slowly (~10% per year)

Hence: I/O more of a bottleneck – avoid if at all possible. 5

Storing and Retrieving Tabular Data

• Relational DBMS
– Designed for large tabular datasets.

• Object-oriented DBMS
– Support complex structures, and can avoid joins by merely

following links through the schema.
– But: astronomical users have mostly had their fingers burned.

• Statistical packages (SAS, SPSS, MINITAB, BDMP,
MATLAB, S-PLUS, etc.)
– Designed to handle datasets which fit in memory

• Data visualisation packages (IDL, PVWave, AVS, etc.)
– Limited scalability: designed for millions, not billions.

6

Nine out of Ten Archives use RDBMS

• Can handle large datasets, well beyond the 2 GB boundary of
32-bit filing systems.

• Can use index for fast searching (find any row in ~30 ms)
• Have SQL - a powerful query language.
• Can handle null (missing) values properly (3-way logic)
• Mature technology with reliable software products.
• Cheap, because Open Source products like MySQL and

Postgres are generally “good enough” for data archives.
• But: sequential scans are slow, because tables are invariably

stored row-wise, because
– Row-based storage makes transactions efficient.
– Lots of other features mis-matched to needs of astronomy.

7

And the tenth?
• Some home-grown database software is still in use:

– BROWSE from ESOC/ESTEC –
• originated at ESOC in 1970s, written in Fortran66.
• used by several astronomical data archives, and in

a few recent papers
• being phased out by archives as hard to support.

– WCStools from Harvard-Smithsonian CfA
• used by many archive sites as it supports fairly

efficient cone-searches etc.
– SIMBAD at CDS (Strasbourg)

• the world’s most comprehensive astronomical
bibliographical database

• was written in-house.
8

What should a data explorer package support?

9

• Basic database operations: select subsets, compute
new columns, sort, group, equi-joins with other tables.
– RDBMS does these fairly well.

• Statistical operations: find means, medians and other
quantiles, find outliers, compute regressions, etc.
– RDBMS can do simpler operations at least.

• Cross-matching: spatial join - needs spatial indexing
– Some RDBMS can do this, but not all.

• Graphics and visualisation: histograms, scatter-plots,
image overlays, density maps, multi-dimensional
plots, etc.
– Nearly all beyond the scope of RDBMS.

• Advanced mining algorithms (clustering, classification,
etc)
– Cannot do in RDBMS - data have to be exported.

Main Types of Query

• Indexed:
– Fast: typically 20 to 30 milliseconds to select row.

• Sequential scans:
– Slow: may take 30 to 60 minutes to scan a large table

• Combined - involving scanning and indexed access –
e.g. joins.
– Also slow, depending on the table sizes.

10

Main Types of Query

• Indexed:
– Fast: typically 20 to 30 milliseconds to select row.

• Sequential scans:
– Slow: may take 30 to 60 minutes to scan a large table

• Combined - involving scanning and indexed access –
e.g. joins.
– Also slow, depending on the table sizes.

Hence: avoid sequential scans if at all possible.
Unfortunately it isn’t always possible.

11

12

Queries which usually involve a
sequential scan:

• CREATE INDEX (obviously)
• Create/populate a new column, e.g.

– UPDATE table SET column = expression;

• SELECT * FROM table WHERE (bmag-vmag) > 0.5
– Column index won’t help selection on expression

• SELECT AVG(col) FROM table;
– Note: sampling to get approx answer often no faster.

• Finding largest N or smallest N from some column
– DBMS usually do this by sorting.

• Joining one table with another (must scan smaller
table)

• SELECT * FROM table WHERE ABS(glat) < 5.0;
– May not use index unless selectivity >1000, because random

seeks so much slower than sequential reads.

Data exploration in practice

• Data mining must be preceded by data exploration:
– Understanding the data and instrument characteristics
– Data cleaning – removing spurious values.
– Finding the optimum parameters by repeated trials.

• All these operations need to be done interactively,
often using graphical methods.

• Astronomical data explorations will nearly always
include some sequential scans.
– These will account for nearly all the elapsed time

Hence: need to speed up scans so they can be done
interactively and do not require batch jobs – hugely
more productive.

13

Three ways to speed up sequential
scans

• Data compression:
– gain of factor of ~2 easily
– Hard to implement while keeping indexed access.

• Parallel I/O e.g. using Beowulf cluster or similar:
– Many clusters available to astronomers.
– Large potential large gains in speed.
– Not yet adequately exploited for data mining.

• Column-oriented storage:
– Most queries only involve a few columns out of many, so this

will greatly reduce I/O.

14

The Story So Far

• Tables are getting longer and wider
• I/O is an increasingly serious bottleneck
• Queries which scan a whole table are an unavoidable

part of any extensive data exploration process
• Most queries only involve a few columns out of dozens

or hundreds in a typical astronomical table
• RDBMS use row-based storage which means the whole

table has to be read from disc even if only a single
column is accessed

• Column-based storage would be much more efficient for
most queries, no less efficient for any archive query.

15

Column-oriented Tables

Several existing examples:
• Sybase-IQ best known commercial product - from

makers of Sybase-ASE relational database. Fast,
but:
– No Linux version yet
– No spatial indexing
– Very expensive licence costs

• ESO/MIDAS table system
• STSDAS tabled (part of IRAF written at STScI)

16

Column-oriented table in FITS

• FITS binary and ASCII tables are normally row-
orientated, but I managed to get column-based
storage in two ways:
1. Table of one row, but each field is a vector of length N

(where N is the required number of “rows”).
2. FITS file with one column per header-data-unit.

• Both of were handled well by the cFITSIO library,
much faster as expected, but
– cFITSIO library still has some 32-bit limits.
– Files conformed to letter but not spirit of Standard:

incompatible with other FITS tools, so rather pointless to use
FITS format.

– High CPU overhead from need for byte swaps, and handling
2880-byte blocks.

17

Hierarchical Data Format 5

• HDF5 has flexible structure, supports tables, arrays,
groups of objects.

• Comes from NCSA, well-supported library and tools.
• Compatible with Globus, GridFTP.
• Designed for efficient access to big files (no 2 GB

limit).
• Simple API (bindings to C, Fortran90, Java, Python).
• Can attach unlimited metadata to tables and columns.
• Prototype using HDF5 was built and benchmarked:

– Used query parser and evaluator originally written for
Starlink’s CURSA about 1992.

– A sample of 2MASS (~10% of full catalogue) ingested into
HDF5 column-based format. 18

Performance Gain

19

mysql> select count(phi_opt),min(phi_opt),max(phi_opt),avg(phi_opt) from
twomass;

+----------------+--------------+--------------+--------------+
| count(phi_opt) | min(phi_opt) | max(phi_opt) | avg(phi_opt) |
+----------------+--------------+--------------+--------------+
| 33971487 | 0 | 360 | 195.9702 |
+----------------+--------------+--------------+--------------+
1 row in set (4 min 30.73 sec)

hydra:~/hdf> hstats phi_opt
--Column-- points minimum maximum average

phi_opt 33971487 0.0000 360.00 195.97
8.37 seconds

32 times faster than MySQL, other tests show gains 13 to 400.
hydra:~/hdf> hstats phi_opt
--Column-- points minimum maximum average

phi_opt 33971487 0.0000 360.00 195.97
3.51 seconds

Even faster when results in disc cache.

How to build an HDF5-based data explorer

20

• HDF5 library – reliable, efficient, easy to use, allows
unlimited metadata to be attached to column or table.

• Query parser and evaluator – CURSA, or JEL (Java)
• Graphics package – great variety of them available
• Statistics routines – many available
• Indexing – many B-tree libraries available
• Spatial indexing – free R-tree code exists, or use

pixel-code methods (based on HTM or HEALpix)
• Integration with VO for authentication, MySPACE, etc.
• Provide as stand-alone package, and as a Web

Service.
• User interface – allowing iterative filtering, undo, etc.

– Probably the most difficult part of the design.

Additional Advantages

• Makes distributed cross-match more feasible:
– only transfer (ra, dec, err) columns across the network.

• Simple API so users with their own data mining code
(clustering, classification, etc) can read HDF5 datasets
directly.

• Data explorer can easily access astronomical tables in
other formats such as FITS, VOTable, CSV, or (using
JDBC) tables within other DBMS.

• Can provide user with integrated graphics, statistics, etc.
and a host of other desirable features missing from
commercial RDBMS.

21

Data explorer complements RDBMS

Appears to be feasible
• would speed up many slow data operations by 10 to 100

times,
• would overcome all the problems of the RDBMS

The HDF5-based data explorer is not intended to replace
the existing DBMS-based archives but to supplement
them

Cost of using both is mainly that of using twice as much
disc space – no longer an expensive commodity.

22

The Data Deluge Revisited

From the introduction to the AstroGrid-1 Grant Application:

A tidal wave of data is approaching astronomy,
requiring radical new approaches to database
construction, management, and utilisation.

23

