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Nearest Neighbor - Nalve
Approach

e Glven a query point X. e .
e Scan through each X%

point Y .
o Takes O(N) time for each o
queryl o Ne  ° °

33 Distance Computations




Speeding Up Nearest Neighbor

 We can speed up the search for the
nearest neighbor:

— Examine nearby points first.

— Ignore any points that are further then the
nearest point found so far.

* Do this using a KD-tree:
— Tree based data structure

— Recursively partitions points into axis aligned
boxes.



KD-Tree Construction
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We start with a list of n-dimensional points.




KD-Tree Construction
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We can split the points into 2 groups by choosing a

dimension X and value V and separating the points

INto X>Vand X <= V.




KD-Tree Construction
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We can then consider each group separately and
possibly split again (along same/different dimension).



KD-Tree Construction
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We can then consider each group separately and
possibly split again (along same/different dimension).




KD-Tree Construction
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We can keep splitting the points in each set to create a
tree structure. Each node with no children (leaf node)
contains a list of points.



KD-Tree Construction
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We will keep around one additional piece of

Information at each node. The (tight) bounds of the
points at or below this node.



KD-Tree Construction

Use heuristics to make splitting decisions:

* \Which dimension do we split along?
Widest

* Which value do we split at? Median of
value of that split dimension for the points.

 When do we stop? When there are fewer
then m points left OR the box has hit some
minimum width.
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Nearest Neighbor with KD

Trees
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We traverse the tree looking for the nearest
neighbor of the query point.



Nearest Neighbor with KD
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Examine nearby points first: Explore the branch of
the tree that is closest to the query point first.




Nearest Neighbor with KD
Trees
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Examine nearby points first: Explore the branch of
the tree that is closest to the query point first.




Nearest Neighbor with KD
Trees
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When we reach a leaf node: compute the distance
to each point In the node.



Nearest Neighbor with KD

Trees
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When we reach a leaf node: compute the distance
to each point In the node.



Nearest Neighbor with KD

Trees
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Then we can backtrack and try the other branch at
each node visited.



Nearest Neighbor with KD
Trees
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Each time a new closest node Is found, we can
update the distance bounds.



Nearest Neighbor with KD
Trees
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Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT Include the nearest neighbor.



Nearest Neighbor with KD
Trees
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Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT Include the nearest neighbor.



Nearest Neighbor with KD
Trees

Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT Include the nearest neighbor.



Metric Trees

e Kd-trees rendered worse-than-useless In
higher dimensions

* Only requires metric space (a well-
behaved distance function)
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What does k-means do?



K-means

1. Ask user how many
clusters they’'d like.

(e.g. k=5)
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1. Ask user how many

K-means

clusters they’'d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations
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— Auton’s Graphics E J_

K-means |-

1. Ask user how many
clusters they’'d like.

(e.9. k=5) 0.8

2. Randomly guess k
cluster Center
locations

0.6

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns” | °*
a set of datapoints)

0.2
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1. Ask user how many
clusters they’'d like.

(e.9. k=5) 0.8

2. Randomly guess k
cluster Center
locations

0.6

3. Each datapoint finds
out which Center it's
closest to.

0,4

4. Each Center finds
the centroid of the
points it owns
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1.

K-means

Ask user how many
clusters they’'d like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

..and jumps there

..Repeat until
terminated!
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 For basic tutorial on kmeans, see any machine learning text book , or www.cs.cmu.edu/~awm/tutorials/kmeans.html



http://www.cs.cmu.edu/~awm/tutorials/kmeans.html
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K-means search quts

| must compute 2x;
of all points | own

| must compute 2x;
of all points | own

| must compute 2x;
of all points | own

| must compute 2.x.
of all points | own




K-means search quts

| will compute 2.x; of all
points | own in rectangle

| will compute 2.x; of all
points | own in rectangle

| will compute 2.x; of all
points | own in rectangle

[

| will compute 2.x; of all
points | own in rectangle




K-means search quts

| will compute 2.x; of all points |
own in left subrectangle, then
right subrectangle, then add ‘em

| will compute 2x; of all points | own in
left rectangle, then right
subrectangle, then add ‘em

| will compute 2x; of all points | own
in left rectangle, then right
subrectangle, then add ‘em

| will compute Xx; of all points | own
in left rectangle, then right
subrectangle, then add ‘em




In recursive call...

| will compute 2.x; of all
points | own in rectangle
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1. Find center nearest to

In recursive call... "
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1. Find center nearest to

. rectangle
In recursive Ca” """ 2. For each other center:

| will compute 2x; of all can it own any points in

points | own in rectangle rectangle?
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In recursive call.

| will compute 2x; of all
points | own in rectangle

@D

2x; of all
rectangle




1. Find center nearest to

Driininn rectangle
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Pruning not possible at

_previous level...

| will compute 2.x; of all

points | own in rectangle

3 .

1.

Find center nearest to
rectangle

For each other center:
can it own any points in
rectangle?

Ifyes, gecurse... , ¢

4

| will compute 2.x; of all
points | own in rectangle

will compute 2.x; of all
points | own in rectangle




1. Find center nearest to

. . rectangle
BIaCkI IStI ng 2. For each other center:
| will compute 2x; of all can it own any points in
points | own in rectangle rectangle?

3. Ifyes, gecurse...

| will compute 2.x; of all
points | own in rectangle
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Example

Example generated by:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,

(KDD99) (available on
www.autonlab.org )



http://www.autonlab.org/

Auton’s Graphics

K-means
continues




K-means
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K-means
ontinues




K-means
ontinues
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K-means

continues




K-means

continues




K-means

continues
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K-means

terminates




Comparison to a linear

algorithm
points | blacklisting | naive | speedup
50000 2.02 H2.22 25.9
100000 2.16 134.82 62.3
200000 2.97 223.84 75.3
300000 1.87 328.80 176.3
433208 3.41 465.24 136.6

Astrophysics data (2-dimensions)
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What if we want to do density estimation with
multimodal or clumpy data?
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The GMM assumption

There are k components. The
I'th component is called o,

Component w, has an
associated mean vector y;

o Hi1

o M3




The GMM assumption

e There are k components. The
I'th component is called o,

e Component w, has an
associated mean vector y;
. ﬂ]\

e Each component generates data
from a Gaussian with mean g,
and covariance matrix o</

Assume that each datapoint is
generated according to the
following recipe:




The GMM assumption

e There are k components. The
I'th component is called o,

e Component w, has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g,
and covariance matrix o</

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability AP(w).



The GMM assumption

e There are k components. The
I'th component is called o,

e Component w, has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g; X
and covariance matrix o</

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability AP(w).

2. Datapoint ~ N(y,, o%1)



The General GMM assumption

e There are k components. The
I'th component is called o,

e Component w, has an
associated mean vector y; m
e Each component generates data /

o Hi
from a Gaussian with mean g,

and covariance matrix /

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability AP(w).

2. Datapoint ~ N(u, %))



Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible




After first
iteration




After 2nd
iteration




After 3rd
iteration




After 4th
iteration




After 5th
iteration




After 6th
iteration




After 20th
iteration
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Some BIo

Assay

data



GMM
clustering
of the
assay
data




Resulting
Density
Estimator

 For basic tutorial on Gaussian Mixture Models, see Hastie et al or Duda, Hart & Stork books , or www.cs.cmu.edu/~awm/tutorials/gmm.html



http://www.cs.cmu.edu/~awm/tutorials/gmm.html

"Nodes visited during an EM
pass
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Sky Survey Data: Time

Taken by the Slow method.
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Sky Survey Data: Time
Taken by the Fast method

Fast Time (s=cs)
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Uses for kd-trees and cousins

« K-Means clustering [Pelleg and Moore, 99], [Moore 2000]

« Kernel Density Estimation [Deng & Moore, 1995], [Gray & Moore 2001]
» Kernel-density-based clustering [Wong and Moore, 2002]

o Gaussian Mixture Model [Moore, 1999]

» Kernel Regression [Deng and Moore, 1995]

 Locally weighted regression [Moore, Schneider, Deng, 97]

» Kernel-based Bayes Classifiers [Moore and Schneider, 97]
* N-point correlation functions [Gray and Moore 2001]

Also work by Priebe, Ramikrishnan, Schaal, D’Souza, Elkan,...

Papers (and software). www.autonlab.org
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Galactic Morphology via
Eigengalaxies

Brigham S. Anderson, CMU
Andrew Moore, CMU
Andy Connolly, U. of Pittsburgh Astrophysics
Bob Nichols, CMU Astrophysics
Mariangela Bernardi, CMU Astrophysics



Image space (~4096 dim)




Image space (~4096 dim)




Disk

Exponential profile (Freeman, 1970)

2-d disk

—
Td

I(r) o exp(

)

Bulge
de Vaucouleur’s profile (1953)

3-d oblate spheroid




Model Parameters

Hz Hy
Fy Fy
Ty Td
€p
Yinc
Yo Yd
sky

Sersic

the z and y offset of the galactic center from the image center (pizels)
total integrated flux of bulge or disk (erg - em?/sec)

bulge or disk scale length. (pizels)

apparent bulge ellipticity (unitless).

disk inclination (degrees). Rotation toward viewer.

bulge or disk angle of rotation (degrees).

background offset (flux/cm?)

a bulge shape parameter that is fixed to the value 4 for all expts



demo



Algorithm Method Speed | Weakness
?

Naive deconvolve & fit e.g., descent sensitive to noise

GIM2d (Simard, 2002) | Simulated annealing | ~3 min

Galfit (Peng, 2002) Levenberg-Marquadt | ~30 sec local minima,

GMORPH Memory-based ~1 sec

1-d approaches descent <1 sec bias
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Parameter space (12 dim)
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Image space (~4096 dim)




Target Image

Parameter space (12 dim)
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Parameter space (12 dim)
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Parameter space (12 dim)

1008

Target Image

-

Image space (~4096 dim)




Carnegie Mellon @
O u tI I n e autonlab.org

v’ Kd-trees
v' Fast nearest-neighbor finding
v Fast K-means clustering
v Fast kernel density estimation

v’ Large-scale galactic morphology

»GMorph

v Memory-based
» PCA



0.99

o
©
©

Variance Explained

o
©
\l

0.96

0.95

)

o
®

O

O

O

2 4 6 8 10 12

Number of Eigenspace Dimensions

14

16









Target Image

Parameter space (12 dim)
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Eigenspace (~16 dim)




Target Image

Parameter space (12 dim)
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Target Image

Parameter space (12 dim)
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shapshot
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10

Bulge Radius Recovery




GMorph htted B/T

GIM2d Comparison (Bulge-to-Total Flux ratio)
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http://www.autonlab.org/autonweb/showPaper.jsp?ID=anderson-gmorph
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