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Nearest Neighbor - Naïve 
Approach

• Given a query point X.
• Scan through each 

point Y
• Takes O(N) time for each 

query!

33 Distance Computations



Speeding Up Nearest Neighbor

• We can speed up the search for the 
nearest neighbor:
– Examine nearby points first.
– Ignore any points that are further then the 

nearest point found so far.
• Do this using a KD-tree:

– Tree based data structure
– Recursively partitions points into axis aligned 

boxes.



KD-Tree Construction
Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

We start with a list of n-dimensional points.



KD-Tree Construction

Pt X Y
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0
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3
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… … …

We can split the points into 2 groups by choosing a 
dimension X and value V and separating the points 
into X > V and X <= V.
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KD-Tree Construction

Pt X Y
3 0.1

3
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… … …

We can then consider each group separately and 
possibly split again (along same/different dimension).

X>.5

Pt X Y
2 1.00 4.31
… … …

YESNO
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0
0.0
0

… … …

Y>.1
NO YES



KD-Tree Construction

We can keep splitting the points in each set to create a 
tree structure.  Each node with no children (leaf node) 
contains a list of points.



KD-Tree Construction

We will keep around one additional piece of 
information at each node.  The (tight) bounds of the 
points at or below this node.



KD-Tree Construction

Use heuristics to make splitting decisions:

• Which dimension do we split along?  
Widest

• Which value do we split at?  Median of 
value of that split dimension for the points.

• When do we stop?   When there are fewer 
then m points left OR the box has hit some 
minimum width.
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Nearest Neighbor with KD 
Trees

We traverse the tree looking for the nearest 
neighbor of the query point.



Nearest Neighbor with KD 
Trees

Examine nearby points first: Explore the branch of 
the tree that is closest to the query point first.



Nearest Neighbor with KD 
Trees

Examine nearby points first: Explore the branch of 
the tree that is closest to the query point first.



Nearest Neighbor with KD 
Trees

When we reach a leaf node: compute the distance 
to each point in the node.



Nearest Neighbor with KD 
Trees

When we reach a leaf node: compute the distance 
to each point in the node.



Nearest Neighbor with KD 
Trees

Then we can backtrack and try the other branch at 
each node visited.



Nearest Neighbor with KD 
Trees

Each time a new closest node is found, we can 
update the distance bounds.



Nearest Neighbor with KD 
Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.



Nearest Neighbor with KD 
Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.



Nearest Neighbor with KD 
Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.



Metric Trees

• Kd-trees rendered worse-than-useless in 
higher dimensions

• Only requires metric space (a well-
behaved distance function)
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What does k-means do?



K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!

• For basic tutorial on kmeans, see any machine learning text book , or www.cs.cmu.edu/~awm/tutorials/kmeans.html

http://www.cs.cmu.edu/~awm/tutorials/kmeans.html


K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns
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K-means search guts
I must compute Σxi

of all points I own

I must compute Σxi
of all points I own

I must compute Σxi
of all points I own

I must compute Σxi
of all points I own



K-means search guts
I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle



K-means search guts
I will compute Σxi of all points I 

own in left subrectangle, then 
right subrectangle, then add ‘em

I will compute Σxi of all points I own in 
left rectangle, then right 

subrectangle, then add ‘em

I will compute Σxi of all points I own 
in left rectangle, then right 
subrectangle, then add ‘em

I will compute Σxi of all points I own 
in left rectangle, then right 

subrectangle, then add ‘em



In recursive call…
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points I own in rectangle
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In recursive call…
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points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

1. Find center nearest to 
rectangle
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In recursive call…
I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

1. Find center nearest to 
rectangle

2. For each other center: 
can it own any points in 
rectangle?



Pruning
I will just grab Σxi from 
the cached value in the 

node

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

1. Find center nearest to 
rectangle

2. For each other center: 
can it own any points in 
rectangle?

3. If not, PRUNE



Pruning not possible at 
previous level…

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

1. Find center nearest to 
rectangle

2. For each other center: 
can it own any points in 
rectangle?

3. If yes, recurse...

I will compute Σxi of all 
points I own in rectangle

But.. maybe there’s some 

optimization possible anyway?



Blacklisting

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

I will compute Σxi of all 
points I own in rectangle

1. Find center nearest to 
rectangle

2. For each other center: 
can it own any points in 
rectangle?

3. If yes, recurse...

I will compute Σxi of all 
points I own in rectangle

But.. maybe there’s some 

optimization possible anyway?A hopeless center never needs to be considered in any recursion



Example

Example generated by:

Dan Pelleg and Andrew 
Moore. Accelerating Exact 
k-means Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, 
(KDD99) (available on 
www.autonlab.org )

http://www.autonlab.org/
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K-means 
continues

…



K-means 
continues

…



K-means 
terminates



Comparison to a linear 
algorithm

Astrophysics data (2-dimensions)
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What if we want to do density estimation with 
multimodal or clumpy data?



The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector μi

μ1

μ2

μ3
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector μi

• Each component generates data 
from a Gaussian with mean μi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(ωi).

2. Datapoint ~ N(μi, σ2I )

μ2

x



The General GMM assumption

μ1

μ2

μ3

• There are k components. The 
i’th component is called ωi

• Component ωi has an 
associated mean vector μi

• Each component generates data 
from a Gaussian with mean μi 
and covariance matrix Σi 

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(ωi).

2. Datapoint ~ N(μi, Σi )



Gaussian 
Mixture 

Example: 
Start

Advance apologies: in Black 
and White this example will be 

incomprehensible



After first 
iteration



After 2nd 
iteration



After 3rd 
iteration



After 4th 
iteration



After 5th 
iteration



After 6th 
iteration



After 20th 
iteration



Some Bio 
Assay 
data



GMM 
clustering 

of the 
assay 
data



Resulting 
Density 

Estimator

• For basic tutorial on Gaussian Mixture Models, see Hastie et al or Duda, Hart & Stork books , or www.cs.cmu.edu/~awm/tutorials/gmm.html

http://www.cs.cmu.edu/~awm/tutorials/gmm.html








Uses for kd-trees and cousins
• K-Means clustering [Pelleg and Moore, 99], [Moore 2000]

• Kernel Density Estimation [Deng & Moore, 1995], [Gray & Moore 2001]

• Kernel-density-based clustering [Wong and Moore, 2002]

• Gaussian Mixture Model [Moore, 1999]

• Kernel Regression [Deng and Moore, 1995]

• Locally weighted regression [Moore, Schneider, Deng, 97]

• Kernel-based Bayes Classifiers [Moore and Schneider, 97]

• N-point correlation functions [Gray and Moore 2001] 

Also work by Priebe, Ramikrishnan, Schaal, D’Souza, Elkan,…

Papers (and software): www.autonlab.org
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Image space (~4096 dim)
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Parameter space (12 dim)
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paper

See AUTON website for papers

http://www.autonlab.org/autonweb/showPaper.jsp?ID=anderson-gmorph
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