

Scalable Data Mining

Brigham Anderson, Andrew Moore, Dan Pelleg, Alex Gray, Bob Nichols, Andy Connolly

The Auton Lab, Carnegie Mellon University

www.autonlab.org

Outline

□ Kd-trees

□ Fast nearest-neighbor finding

- □ Fast K-means clustering
- □ Fast kernel density estimation
- □ Large-scale galactic morphology

Outline

Kd-trees

□ Fast nearest-neighbor finding

□ Fast K-means clustering

□ Fast kernel density estimation

□ Large-scale galactic morphology

Nearest Neighbor - Naïve Approach

- Given a query point X.
- Scan through each point Y
- Takes O(N) time for each query!

33 Distance Computations

Speeding Up Nearest Neighbor

- We can speed up the search for the nearest neighbor:
 - Examine nearby points first.
 - Ignore any points that are further then the nearest point found so far.
- Do this using a KD-tree:
 - Tree based data structure
 - Recursively partitions points into axis aligned boxes.

Pt	Х	Y
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

We start with a list of n-dimensional points.

We can split the points into 2 groups by choosing a dimension X and value V and separating the points into X > V and $X \ll V$.

We can then consider each group separately and possibly split again (along same/different dimension).

We can then consider each group separately and possibly split again (along same/different dimension).

We can keep splitting the points in each set to create a tree structure. Each node with no children (leaf node) contains a list of points.

We will keep around one additional piece of information at each node. The (tight) bounds of the points at or below this node.

Use heuristics to make splitting decisions:

- Which dimension do we split along?
 Widest
- Which value do we split at? Median of value of that split dimension for the points.
- When do we stop? When there are fewer then m points left OR the box has hit some minimum width.

Outline

✓ Kd-trees

- Fast nearest-neighbor finding
- □ Fast K-means clustering
- □ Fast kernel density estimation
- □ Large-scale galactic morphology

We traverse the tree looking for the nearest neighbor of the query point.

Examine nearby points first: Explore the branch of the tree that is closest to the query point first.

Examine nearby points first: Explore the branch of the tree that is closest to the query point first.

When we reach a leaf node: compute the distance to each point in the node.

When we reach a leaf node: compute the distance to each point in the node.

Then we can backtrack and try the other branch at each node visited.

Each time a new closest node is found, we can update the distance bounds.

Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbor.

Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbor.

Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbor.

Metric Trees

- Kd-trees rendered worse-than-useless in higher dimensions
- Only requires metric space (a wellbehaved distance function)

Outline

✓ Kd-trees

- ✓ Fast nearest-neighbor finding
- Fast K-means clustering
- □ Fast kernel density estimation
- □ Large-scale galactic morphology

What does k-means do?

Ask user how many clusters they'd like.
 (e.g. k=5)

- Ask user how many clusters they'd like.
 (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

• For basic tutorial on kmeans, see any machine learning text book , or www.cs.cmu.edu/~awm/tutorials/kmeans.html

K-means search guts

In recursive call...

1. Find center nearest to rectangle

In recursive call..

I will compute $\Sigma \mathbf{x}_i$ of all points I own in rectangle

- 1. Find center nearest to rectangle
- 2. For each other center: can it own any points in rectangle?

I will compute $\Sigma \mathbf{x}_i$ of all points I own in rectangle

I will compute $\sum \mathbf{x}_i$ of all

points I own in rectangle

I will compute $\Sigma \mathbf{x}_i$ of all points I own in rectangle

Example

Example generated by:

Dan Pelleg and Andrew Moore. Accelerating Exact k-means Algorithms with Geometric Reasoning. Proc. Conference on Knowledge Discovery in Databases 1999, (KDD99) (available on www.autonlab.org)

K-means terminates

Comparison to a linear algorithm

points	blacklisting	naive	speedup
50000	2.02	52.22	25.9
100000	2.16	134.82	62.3
200000	2.97	223.84	75.3
300000	1.87	328.80	176.3
433208	3.41	465.24	136.6

Astrophysics data (2-dimensions)

Outline

- ✓ Kd-trees
 - ✓ Fast nearest-neighbor finding
 - ✓ Fast K-means clustering
 - Fast kernel density estimation
- □ Large-scale galactic morphology

What if we want to do density estimation with multimodal or clumpy data?

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint ~ N($\mu_{\mu} \sigma^2 I$)

The General GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint ~ N($\mu_{\mu} \Sigma_{i}$)

Gaussian Mixture Example: Start

Advance apologies: in Black and White this example will be incomprehensible

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

Nodes visited during an EM pass

Sky Survey Data: Time Taken by the Slow method.

/

Sky Survey Data: Time Taken by the Fast method

1

Uses for kd-trees and cousins

- K-Means clustering [Pelleg and Moore, 99], [Moore 2000]
- Kernel Density Estimation [Deng & Moore, 1995], [Gray & Moore 2001]
- Kernel-density-based clustering [Wong and Moore, 2002]
- Gaussian Mixture Model [Moore, 1999]
- Kernel Regression [Deng and Moore, 1995]
- Locally weighted regression [Moore, Schneider, Deng, 97]
- Kernel-based Bayes Classifiers [Moore and Schneider, 97]
- N-point correlation functions [Gray and Moore 2001]

Also work by Priebe, Ramikrishnan, Schaal, D'Souza, Elkan,...

Papers (and software): www.autonlab.org

Uses for kd-trees and cousins

- K-Means clustering [Pelleg and Moore, 99], [Moore 2000]
- Kernel Density Estimation [Deng & Moore, 1995], [Gray & Moore 2001]
- Kernel-density-based clustering [Wong and Moore, 2002]
- Gaussian Mixture Model [Moore, 1999]
- Kernel Regression [Deng and Moore, 1995]
- Locally weighted regression [Moore, Schneider, Deng, 97]
- Kernel-based Bayes Classifiers [Moore and Schneider, 97]
- N-point correlation functions [Gray and Moore 2001]

Also work by Priebe, Ramikrishnan, Schaal, D'Souza, Elkan,...

Papers (and software): www.autonlab.org

- ✓ Kd-trees
 - ✓ Fast nearest-neighbor finding
 - ✓ Fast K-means clustering
 - ✓ Fast kernel density estimation
- Large-scale galactic morphology

- ✓ Fast nearest-neighbor finding
- ✓ Fast K-means clustering
- ✓ Fast kernel density estimation
- Large-scale galactic morphology
 GMorph
 Memory-based
 PCA

Galactic Morphology via Eigengalaxies

Brigham S. Anderson, CMU Andrew Moore, CMU Andy Connolly, U. of Pittsburgh Astrophysics Bob Nichols, CMU Astrophysics Mariangela Bernardi, CMU Astrophysics

Image space (~4096 dim)

Image space (~4096 dim)

Disk Exponential profile (Freeman, 1970)

2-d disk

$$I(r) \propto exp(-\frac{r}{r_d})$$

Bulge de Vaucouleur's profile (1953)

3-d oblate spheroid
$$I(r) \propto exp\left(-b\left(\frac{r}{r_b}\right)^{\frac{1}{4}}\right)$$

Model Parameters

$\mu_x \ \mu_y$	the x and y offset of the galactic center from the image center (<i>pixels</i>)		
$F_b F_d$	total integrated flux of bulge or disk $(erg \cdot cm^2/sec)$		
$r_b r_d$	bulge or disk scale length. $(pixels)$		
ϵ_b	apparent bulge ellipticity (unitless).		
γ_{inc}	disk inclination (degrees). Rotation toward viewer.		
$\gamma_b \gamma_d$	bulge or disk angle of rotation (degrees).		
sky	background offset $(flux/cm^2)$		
Sersic	a bulge shape parameter that is fixed to the value 4 for all expts		

Algorithm	Method	Speed	Weakness
Naive deconvolve & fit	e.g., descent	?	sensitive to noise
GIM2d (Simard, 2002)	Simulated annealing	$~3 \min$	
Galfit (Peng, 2002)	Levenberg-Marquadt	~30 sec	local minima
GMORPH	Memory-based	~1 sec	
1-d approaches	$\operatorname{descent}$	<1 sec	bias

- ✓ Fast nearest-neighbor finding
- ✓ Fast K-means clustering
- ✓ Fast kernel density estimation
- ✓ Large-scale galactic morphology
 ➢GMorph
 □ Memory-based
 □ PCA

- ✓ Fast nearest-neighbor finding
- ✓ Fast K-means clustering
- ✓ Fast kernel density estimation
- ✓ Large-scale galactic morphology
 ➢ GMorph
 ➢ Memory-based
 □ PCA

- ✓ Fast nearest-neighbor finding
- ✓ Fast K-means clustering
- ✓ Fast kernel density estimation
- ✓ Large-scale galactic morphology
 ➢GMorph
 ✓ Memory-based
 - ➤ PCA

snapshot

- ✓ Fast nearest-neighbor finding
- ✓ Fast K-means clustering
- ✓ Fast kernel density estimation
- ✓ Large-scale galactic morphology
 - ≻ GMorph
 - ✓ Memory-based
 - ✓ PCA
 - Results

Disk Radius Recovery

Bulge Radius Recovery

