BUILDING APPLICATIONS FROM A
WEB SERVICE BASED
COMPONENT ARCHITECTURE

D. Gannon, S. Krishnan, L. Fang,
G. Kandaswamy, Y. Simmhan,

A. Slominski

What this talk I1s about

 How to build secure, reliable applications composed from
distributed components and web services.

* A Motivating Application

— LEAD Project

* Tools to allow research meteorologists to compose powerful applications
that predict mesoscale weather events in better than real time.

Al of large cumulonimbus
thunderhead during early

stages of developing storm.
Credit NOAA FPhoto Library

Multiple cloud-to-cloud and
cloud-to-ground lightning
strokes caught using time-
lapse photography during a
night-time thunderstorm.
Credit NOAA Photo Library

k|

Seyvmolr, TX

April 10, 1979
Fhotographer: . Burgess
Credit NOAA Photo Librany

Predicting Severe Storms

* To deliver better than real-time predictions

— Data mining of live instrument streams and historical
storm metadata

— Requisition large computational resources on demand
to start a large number of simulations
e Mine simulation outputs to see which track real storm evolution.
* Refine scenarios that match incoming data.

— May Need to requisition bandwidth to make the needed
data analysis possible.

— May require real-time re-alignment of instruments.

— Workflows may run for a long time and they must be
adaptive and very dynamic

Predlctlng Severe Storms

Digital Library
Holdings

Historical
@ [Observations and]
Model Output NOMADS , %

A NCDC EER)DLESE
SuomiNet %ﬁ 2 .
GPS i . :
Meteorological DHggrgé?sgcr Wisconsin/SSEC
Data Server NASA, NOAAPort
. EROS Dajg Center
"‘ﬁ The LEAD project j

O o

A Univ. of Oklahoma . —

Satellite
Radar
Data Server Data Server
:H Large scale, real-time
Surface and Simulation Grid Lightning
Upper-Air Data Server
Data Server \ J
O
SUNY Albany
Air Quality
ﬁ Demographic Data Server
Data Server Operationa|

User Generated

DODS Byy x’ Data
'“M‘M% Project UCAR/JOSS

CONDUIT Individual Investigators

>
(@ Oceanograp A Model Grids %)
hic Data and Server \[Field Program &]

Typical, Very Simple, LEAD Scenario

Search for data, run a simulation and catalog results.
— Query metadata catalog for a dataset
— Use the result for a large WRF simulation
— Allocate storage on a remote resource
— Move the WRF output to that allocated space

— Record the output location and computation history in a metadata
catalog.

e How does a user describe such a scenario as a workflow or
distributed application?

« How do we free the user from details of distributed
computing in a service oriented architecture?

 What does a service architecture mean in this context?
 Can it be done by a component composition approach?

Common Comp. Architecture (CCA)

o Started in mid 90s.
— The Common Component Architecture

— Four different implementations exist
e SciRun I
o Caffene (Sandia)
e Decaf (Livermore)
« XCAT (Indiana/Binghamton)

— A specification for component design for parallel and
distributed applications
A Few words about the architecture and
applications

CCA Concepts

e Ports: the public interfaces of a component

— defines the different services provided by a
component and the ways the component uses
other services and components.

setlmage(lmage |]
ge(Image 1) Uses Ports - interface of a
Image getimage() service used by component
Image Processing

adjustColor() B Component [| +— calls doFFT(...)
setFilter(Filter) |

Provides Ports - interfaces
functions (services) provided by component

Building Applications by Composition

e Connect uses/Ports to Provides Ports.

/

Image Processing

Image

t]
database setimage(...) .

component | | getimage()

Component - dOFFT(...)

adjustColor() Acme
FFT
component
)
= | P

Image tool graphical interface component

Community Climate System Model

Control

P

Al mospkere P

QeeanPor
LealceFon
LandPar
EiezrFort

HubCauplerPor

POP_OCean

cFrops FluxCoupl & ot |-

j

SealcePorT |
CICE_Sealce

LandFor_|

CouplerPor

e

RinerFort |
RiverTransport

n:'.E'rups-' | FlusiCouplerPart =

:F'n:;m. | FluzCouplerPort | =

A

Atmosphere

Ocean

Sea Ice

A

Land

River

A

cProps

 CPL6_Coupler

Flux Coupler

Earth System Modeling Framework CCA
Prototype

cProps

e

AtmComponentO

‘- cProps |
] l CplatmXOcn
-.;Prnfs | pSve _ ‘{3:1 CplAtmXOcnComponento
G 8 AT —
CplAatmXOen |

OCMN — T

~ cpiomxam | ==> | chops | psvc |
[o=t]

e OcnComponento

plOcnXAtmComponentQ

 The Climate Component
Is Control

Atmosphere Component

Ocean Component

Atmosphere to Ocean
Transformer

Ocean to Atmosphere
Transformer

Quantum Chemistry

e Design of CCA integration of NWChem and
MPQC. (A work in progress)
— One is Fortran and the other C++
— One standard interface using CCA/Babel/SIDL.

Optimization
Uy =t os..

Build options User
Input
U, .4 (Visualization)
r.gH f(u) energy

Coordinate Model
(perform transformations)

u Cartesian coordinates
u intemal coordinates

g gradient (in Cartesians)
g gradient (in intemals)

H Hessian (in Cartesians)

: |
I 1

1 : -
1 H Hessian (in internals)
I MPQC ! .
I : s update (in intemals)
|

1

Combustion Modeling

 The High level model of the system integration is
refined into the component composition

[

GoPort ||Meo‘1-_pon TimelnterpPort
TnitCondPort InitCondPort | | MeshPort MeshPort I@
ImpllntegPort InifialCondition
e GrACEComponent

ZPUOIE oL ImplIntegPort | |Me&]1Por!

RegriderPort | CvodePort - CvodePort || DensePort [DensePort MeshPort
StatrsticsPort PropertiesPort PropertiesPort [PropertiesPort
TheDriver Implicitintegrator CvodeComponent ThermoChemistry
Explicit integration subsystem ExpliotegFort | [MestPor
L, | DiffFlux DiffFlux | | DiffCoeffs | | DiffCoeffs || MeshPort
Diffusion Convection [MaxDiftCoctt | | DiffCoeffProp [DiffCoefiProp|
Mesh & DataPort DiffusionPhysics DRFMComponent
— Data Objeet ExplicitIntegrator
iE: : GrACE Component
Implicit integration subsystem
MaxDiffCoeff || DiffCoeffProp | | 7| TimelnterpPort || MeshPort
; B Datalort MeshPort L | TheTimelnterpolator
ThermoChemistry _ | | P
MaxDiffCoeffEvaluator
StatisticsPort | |)-Ieslﬂ’ort |- RegriderPort | |.\-Ie<:1'.P:J:1
StatisticsComponent ErrEstimAndRegrid

Experience with CCA

* The effort to “re-factor” applications can be very
difficult.
— Where are the component boundaries?

— Who owns large data structures?
* Make the data structure a component.

— What are the correct port Interfaces?
e Can't interoperate unless they share the same interface type.

— No quantitative results yet.
* The positive
— Production codes are just becoming mature.
— A serious library of components is starting to emerge.

 Now beginning to understand components for
distributed apps

CCA components as Web Services

Each Provide port can be a complete web service

— Web service with more than one port are not very well
defined

Uses ports become web service “client stubs”.

Connection is then a binding between a client stub
and a provided service.

XCAT3 implements this feature.
— Uses python as the scripting language.

What about using web/grid services as
components?

Working with Web Services

e \Web Service are not the same as CCA

 Message oriented and not RCP based.

— Send a message to the service

 YOu may get a response or you may not.
— Depends upon the service semantics.

 No concept of “uses port”.

— However some serves generate messages In
response to messages sent.

Component Programming with Services

. . uer
Services in our example are [arery]
— Metadata catalog { Input
— Storage_ AIIoc_ator | Metadata
— WRF Simulation Engine Catalog
— Execution history recorder
The services are assumed to be stateless loutput

or, if stateful, they are transient.
Services have input messages and
output messages.

— Each message may have multiple parts [mdata | [reference
— An input message may have its parts come input __, \

Query results

from different sources
: Metadata
— Outputs may be sent to multiple sources Catalog
— A Notification event is often generated as an
additional output. l output

notification

The Workflow

Experiment Name
(Notification Topic)

\ R Event
Listener
[query]
‘ Notification
e Broker | Metadata
i Catalog
Catalog “done”
Output URL Final URL “done”
. WRF .
Parameter file Factory “done” File Mover |
f
: Space .
R f
[Storage requirements]——> st L | Resource Into

“done”

Services, state and context

 How do you manage services with multiple
“related clients”?

“contex12”, 3

Argument 1

“contextl?2”, 6

multiply

—_ A
[ument2 “contextl2”, 2

Questions

Can we compile such a “graph picture” into a
running distributed application?

— What type of application is it?
 Workflow? Statically connected distributed components?

— How is synchronization handled?
— How is failure managed?

How and when are specific resources allocated for
the computational parts?

Can the resulting workflow be turned into another
service to be used by another?

What are the security implications?

Several Possible Solutions

Triana, Kepler, Taverna
— All excellent examples of tools to compose workflows
using graphical tools.

Each is based on an approach where the workflow
engine Is based on an interpretation of the
execution graph.

Triana has been extended to incorporate web
services by means of a component proxy.

We need something that is more appropriate for
dynamic, long running workflows

— BPEL4WS is the most powerful workflow language, but
It Is not very “friendly”.

— Can we compile graphical specs into a BPEL spec?

A Three Level Design

e Front End

— A Grid portal with tools to build and launch distributed
application from remote component services.
 Allow scientists to compose workflow scenarios

e The Middle
— Application factories and security services

e The Back End

— Composing workflow from distributed web service
components. Compiles workflow into a BPEL extension
we call GPEL.

Front End: The Portal

The User’s View of the Grid

The Portal as a Grid Access Point

 The Portal Server provides
the users Grid Context.

OGCE or
GridSphere

Grid Portal Server

Registries and
Name binding

=

Reservations
And Scheduling

AU OUTieuuni iy

Open Grid Se

LEADA:.
[$ for ki orkspace
HamE ure 'ri ontex
: -edu
S ddress/Search: |/ Elipi | S | SRR I
Schedul
Resources [URL: http:// xtreme indiana.edu:2020
Cwrer t[lue t Iy /[gannon
EEoxy Hamdue SR
’{‘:‘m,ﬁ{n,‘ ™ | @ Charie Moad WRF Viz EWE
T ™ (O experimental services e
@ gopi's world EQE
(Rew;/;nut) I @ movie demo i B
https uuuuuuuuu =T Trr—— ER e
(Request) ™ @ the Portal Architecture EdE
Grid Context @ the current time EEE
r @ wave demo B EE
Delete | Copy | Move | Paste | Add

den,

nnnnnnnnn

Legend:

DIRECTORY [l RAW DATA

| customize | @ 1EAF P 1ETADATA F MODIFY T

The portal server

Portal Server

User’s Environment P
=~y 4 =

Selected Portlets
-

por;l:thbrary

e L
Grid/Web Service Clicnt Servlets

" Grid Tools-COG &SOAP

onsists of a collection of servlets and other tocls to
aaaaaa the grid. The us
configured accor

ding to the users preference.

Security

Administration

& Monitoring

Event Service

T

ice Architecture Layer

Logging

Data Management
Service

TCTTVICS

Mar 28, 2004 0F

Manage(Admin Only)

er's environment contains his/her
proxy credentials as well as the portlet that have been

Accounting
Service

SErvice

Grid Orchestration

Web Services Resource Framework - Web 5erwces No f/f/caf/on

Physical Resource Layer

Portal Architecture

« Building on Standard Technologies

— Portlet Design (JSR-168) IBM, Oracle, Sun,
BEA, Apache

— Grid standards: Java CoG, Web/Grid Services
e User configurable, Service Oriented

 Based on Portlet Design

— A portlet is a component within the portal that
provides the interface between the user and
some service

— Portlets can be exchanged, interoperate

Grid

Java Protocols
Local G

: ®
| Client’s Browser S Portlet COG CoG F——| Grid Services
@E"—"‘—E Y= o API Kit GRAM,
= S MDSLDAD
== S iy
= — . .
= £ | Grid Service SOAP ws call B0 Services
= g Portlets

Web Services

The Middle Tier:
Making Applications into Services
Visible to the Portal & User

How do users interact with Grid Services?
How do we maintain reliable Grid Services?
What is the security model?

User-Portal-Service Interaction

o Grid Services with user interfaces are mediated by the

portal.

— The Grid service can keep an interface client to itself as a WS
resource which can be loaded by the server and presented to the

client.

— Allows security to be https from browser and ws-security from portal
server to Grid service.

User’s Browser

1. Click on service link

»

AR e

>

4. Interface
Rendered for user

5. Responses

2. Auth & request
Interface resource .

Grid

A

3. Return interface
code to server

Service

T\

6. Reply and

From user in soap
Or http:post

Response tunneled
trhough server

interface

WSs resources

For example: Component Composer

 An interactive workflow
composer.

— C O m p O n e nt d at ab ase an d Fle Edt Wiew Favorites Tools Help» i
WO rkﬂ OW CO m p I | er IS Q Back ~ () Iﬂ IE] _;\i Address gj hittp /i, extreme.indiana. edu/~gannon/example 1.htm ¥ Edco Li
provided by the grid service

[J WhICh also prOVIdeS the P configure Ezrzzr:::t:l:;ne:nudez
interface tool. ~ | [potomerome

noded

noded del
- MVC pattern . P configure ;:fJ:D [;egnﬂgure i R .
C I I connect toremave connection
— Composer allows | Solotod rovtrPor—

Component Name: noded

« Component selection | ot st

Port type: type

from |Ibrary e { add a node

Networks

Composer | Component Selector

b ~Selected Output Port——

* Drop and drag place-
ment and connection
establishment

« Save and load graph
functions.

The Most Common Question

« How can | turn my entire application into a
component or grid service?

e | want to provide my application as a service
for others to use.

— But | don’t want too many others to use |It.
— | can’t get my friends accounts?

Wrapping Science Apps as Services

 The Factory Pattern [

— A Factory is a web
service that creates a
running instance of an | ‘ |

application for My Application Factory
authorized users.

— A factory client allows
app user to:
« Specify needed input
files and other
parameters

 Indicate choice among
known execution hosts

where app is deployed. Running App
Instance

App. parameters J

Upload your input file url

The Portal Factory Service Generator

e Start with
— A Deployed Application oenvice Doc
e A script to run It. _Browser
e A list of all needed input files =
A list of all generated output files. % .
o Write a AppService Document | https
— Upload this to the portal Factory Portal
generator in the portal. Server
* A new Factory is started for you. e oy

— A portal client interface to the factory B
is also automatically generated. App Fazioy

= £ e

The Security Model

e The partieS: ~ Mary’s Browser

— The service provider
« Usually the application scientist in
charge of the app.
— The user

 Usually an associate or client of the
provider.

* |s provided a capability token by the
provider to run the application. Portal Server

e The capability token ('\:"a%r;’s”ﬁifsxy &
— An xml document (SAML) signed by the

provider that says the lrJ]ser has Proxy & Soap +
permission to access the service. el dig. sig +

« The factory service Server cap. token

— Only accepts requests signed by the
user and containing the required
capability token.

I—V—I

Bob’s App Factory

Example: Rendering a Storm

« Take WRF output, WRF | . Portal

e move it to a cluster, Simulation Directory

 Launch an “OGRE” script to render it, Ll

* move movie to users directory OGRE job | File

* (Work by C. Moad, B. Plale, G. Factory Mover
Kandaswami, L. Fang)

instance

Alliance Portal | R

KDirectory Host: |'|"'I.'|3-AL extrema.indiana. edu Port: [E-EI'-I?

Mombership || Address/Search: |/ [Browse || Search)
URL:linbox1.extreme.indiana.edu
Current Directory: /Ogre Service Registered at Mon Feb 02 LAM daemon booted.
16:25:54 EST 2004 /Run 1075760338320 Rendering jobs begin ...
- — - Rendering jobs finished.,
@ Parameters for the Ogre Service - d [LAM daemon halted.
€ Result E x Hd Converting the renderred images to animations ...
© S - ;] Convertion completed.
Staus - Copying the animation 1o the user's remote host through Grdftp ...

Laegend:
@ LEAF ™ METADATA & MODIFY 21 DIRECTORY [#] RAW
DATA

XDirectory Host: |linbox1.extreme.indiana.edu Port: |B047
Address/Search: |/ | Browse | [Search |

URL:linbox1l.extreme.indiana.edu

Current Directory: /Ogre Service Registered at Mon Feb 02
16:25:54 EST 2004 /Run 1075760338320

_| @ Parameters for the Ogre Service A |
) ©Result e 7 [
! ® Status A |

Delete || Copy || Move || Paste || Add]

LAM daemon booted.

Rendering jobs begin ...

Rendering jobs finished.

LAM daemon halted.

Converting the renderred images to animations ...
Convertion completed.

Copying the animation to the user's remote host through Gridftp ...

View the Results

ALLIANCE

Home

Proxy Manager

LDAP Browser

OGSABrowser

GPIR - Machine
Summary

GPIR - System
Monitor

GPIR - Grid
View

Anabas

Newsgroup
{Read /Post)

//\ Alllance Portal

My Workspace

XDirectory Host: |linbox1.extreme.indiana.edu Port: |HD4?

Address/Search: |/ Browse | [Search

URL:linbox1.extreme.indiana.edu
Current Directory: /Ogre Service Registered at Mon Feb 02
16:25:54 EST 2004 /Run 1075760338320

| @ Parameters for the Ogre Service B
T ® Result =
| @ Status B

[Delele] [Copv] [Move] [Paste] [Add]

Legend:)
© LEAF £ METADATA & MODIFY (1 DIRECTORY [l RAW
DATA

Time step Y0 from boxB¥I0

Component Models

e Frameworks used here

— Portlets — the component model for the Portal
* JSR 168 industry standard

— CCA — Common Component Model
o XCATS3 distributed computing version

— Web Services composed by GPEL

 GPEL is a grid version of BPEL4AWS by Alek
Slominski

Conclusions

 |tis possible to integrate the CCA model with
web/Grid services.

— Each cca provides port is a web service (OGSA)
— Web services are cca components \

 Either one provides port with returned values, or
* One input provides port and one output uses port.
 Notification an important standard “uses port”.

e Security must be built-in from day one.
— It is the single most difficult part of making this work.

 |tis possible to wrap legacy applications as a

web-service-based component using a factory
pattern.

* Interoperability between component frameworks Is
an important goal. Web service standards help.

	BUILDING APPLICATIONS FROM A WEB SERVICE BASED COMPONENT ARCHITECTURE�
	What this talk is about
	Predicting Severe Storms
	Predicting Severe Storms
	Typical, Very Simple, LEAD Scenario
	Common Comp. Architecture (CCA)
	CCA Concepts
	Building Applications by Composition
	Community Climate System Model
	Earth System Modeling Framework CCA Prototype
	Quantum Chemistry
	Combustion Modeling
	Experience with CCA
	CCA components as Web Services
	Working with Web Services
	Component Programming with Services
	The Workflow
	Services, state and context
	Questions
	Several Possible Solutions
	A Three Level Design
	Front End: The Portal
	The Portal as a Grid Access Point
	Portal Architecture
	The Middle Tier:�Making Applications into Services Visible to the Portal & User
	User-Portal-Service Interaction
	For example: Component Composer
	The Most Common Question
	Wrapping Science Apps as Services
	The Portal Factory Service Generator
	The Security Model
	Example: Rendering a Storm
	View the Results
	Component Models
	Conclusions

