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What this talk is about
• How to build secure, reliable applications composed from 

distributed components and web services.
• A Motivating Application

– LEAD Project
• Tools to allow research meteorologists to compose powerful applications 

that predict mesoscale weather events in better than real time.



Predicting Severe Storms
• To deliver better than real-time predictions

– Data mining of live instrument streams and historical 
storm metadata

– Requisition large computational resources on demand 
to start a large number of simulations

• Mine simulation outputs to see which track real storm evolution.
• Refine scenarios that match incoming data.

– May Need to requisition bandwidth to make the needed 
data analysis possible.

– May require real-time re-alignment of instruments.
– Workflows may run for a long time and they must be 

adaptive and very dynamic
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Typical, Very Simple, LEAD Scenario
• Search for data, run a simulation and catalog results.

– Query metadata catalog for a dataset
– Use the result for a large WRF simulation
– Allocate storage on a remote resource
– Move the WRF output to that allocated space
– Record the output location and computation history in a metadata

catalog.

• How does a user describe such a scenario as a workflow or 
distributed application?

• How do we free the user from details of distributed 
computing in a service oriented architecture?

• What does a service architecture mean in this context?
• Can it be done by a component composition approach?



Common Comp. Architecture (CCA)
• Started in mid 90s.

– The Common Component Architecture
– Four different implementations exist

• SciRun II
• Caffene (Sandia)
• Decaf (Livermore)
• XCAT (Indiana/Binghamton)

– A specification for component design for parallel and 
distributed applications

• A Few words about the architecture and 
applications



CCA Concepts
• Ports: the public interfaces of a component

– defines the different services provided by a 
component and the ways the component uses 
other services and components.

Image Processing
Component

setImage(Image I)

Image getImage()

adjustColor()

setFilter(Filter)
calls doFFT(…)

Provides Ports - interfaces
functions (services) provided by component

Uses Ports - interface of a
service used by component
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• Connect uses Ports to Provides Ports.

Building Applications by Composition
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Earth System Modeling Framework CCA 
Prototype

• The Climate Component 
is Control
– Atmosphere Component
– Ocean Component
– Atmosphere to Ocean 

Transformer
– Ocean to Atmosphere 

Transformer



Quantum Chemistry
• Design of CCA integration of NWChem and 

MPQC. (A work in progress)
– One is Fortran and the other C++
– One standard interface using CCA/Babel/SIDL.



Combustion Modeling
• The High level model of the system integration is 

refined into the component composition



Experience with CCA
• The effort to “re-factor” applications can be very 

difficult.
– Where are the component boundaries?
– Who owns large data structures?

• Make the data structure a component.
– What are the correct port Interfaces?

• Can’t interoperate unless they share the same interface type.
– No quantitative results yet.

• The positive
– Production codes are just becoming mature.
– A serious library of components is starting to emerge.

• Now beginning to understand components for 
distributed apps



CCA components as Web Services
• Each Provide port can be a complete web service

– Web service with more than one port are not very well 
defined

• Uses ports become web service “client stubs”. 
• Connection is then a binding between a client stub 

and a provided service.
• XCAT3 implements this feature.

– Uses python as the scripting language.
• What about using web/grid services as 

components?



Working with Web Services
• Web Service are not the same as CCA
• Message oriented and not RCP based.

– Send a message to the service
• You may get a response or you may not.

– Depends upon the service semantics.

• No concept of “uses port”.  
– However some serves generate messages in 

response to messages sent.



Component Programming with Services

• Services in our example are
– Metadata catalog
– Storage Allocator
– WRF Simulation Engine
– Execution history recorder

• The services are assumed to be stateless 
or, if stateful, they are transient.

• Services have input messages and 
output messages.
– Each message may have multiple parts
– An input message may have its parts come 

from different sources 
– Outputs may be sent to multiple sources
– A Notification event is often generated as an 

additional output. 
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The Workflow
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Services, state and context
• How do you manage services with multiple 

“related clients”?

Argument 1

Argument 2Argument 2

multiplymultiply

“contex12”, 3

“context12”, 2

“context12”, 6



Questions 
• Can we compile such a “graph picture” into a 

running distributed application?
– What type of application is it?

• Workflow?  Statically connected distributed components? 

– How is synchronization handled?
– How is failure managed?

• How and when are specific resources allocated for 
the computational parts?

• Can the resulting workflow be turned into another 
service to be used by another?

• What are the security implications?



Several Possible Solutions
• Triana, Kepler, Taverna

– All excellent examples of tools to compose workflows 
using graphical tools.

• Each is based on an approach where the workflow 
engine is based on an interpretation of the 
execution graph.

• Triana has been extended to incorporate web 
services by means of a component proxy.

• We need something that is more appropriate for 
dynamic, long running workflows
– BPEL4WS is the most powerful workflow language, but 

it is not very “friendly”.
– Can we compile graphical specs into a BPEL spec?



A Three Level Design
• Front End

– A Grid portal with tools to build and launch distributed 
application from remote component services.

• Allow scientists to compose workflow scenarios

• The Middle 
– Application factories and security services

• The Back End
– Composing workflow from distributed web service 

components. Compiles workflow into a BPEL extension 
we call GPEL.



Front End: The Portal

The User’s View of the Grid



The Portal as a Grid Access Point
• The Portal Server provides 

the users Grid Context.
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Portal Architecture
• Building on Standard Technologies

– Portlet Design (JSR-168) IBM, Oracle, Sun, 
BEA, Apache

– Grid standards: Java CoG, Web/Grid Services
• User configurable, Service Oriented
• Based on Portlet Design

– A portlet is a component within the portal that 
provides the interface between the user and 
some service

– Portlets can be exchanged, interoperate
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The Middle Tier:
Making Applications into Services 

Visible to the Portal & User

How do users interact with Grid  Services?
How do we maintain reliable Grid Services?

What is the security model?



User-Portal-Service Interaction
• Grid Services with user interfaces are mediated by the 

portal.
– The Grid service can keep an interface client to itself as a WS 

resource which can be loaded by the server and presented to the 
client.

– Allows security to be https from browser and ws-security from portal 
server to Grid service.
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For example: Component Composer
• An interactive workflow 

composer.
– Component database and 

workflow compiler is 
provided by the grid service

• which also provides the 
interface tool.

– MVC pattern.
– Composer allows

• Component selection
from library

• Drop and drag place-
ment and connection
establishment

• Save and load graph
functions.



The Most Common Question
• How can I turn my entire application into a 

component or grid service?
• I want to provide my application as a service 

for others to use.
– But I don’t want too many others to use it.
– I can’t get my friends accounts?



Wrapping Science Apps as Services

• The Factory Pattern
– A Factory is a web 

service that creates a 
running instance of an 
application for 
authorized users.

– A factory client allows 
app user to:

• Specify needed input 
files and other 
parameters

• Indicate choice among 
known execution hosts 
where app is deployed. 

My Application Factory

App. parameters
Upload your input file url

Running App
instance



The Portal Factory Service Generator
• Start with

– A Deployed Application
• A script to run it.
• A list of all needed input files
• A list of all generated output files.

• Write a AppService Document 
– Upload this to the portal Factory 

generator in the portal.
• A new Factory is started for you.  

– A portal client interface to the factory 
is also automatically generated. App Factory
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https 

Create and
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Upload
AppService Doc



The Security Model
• The parties:

– The service provider
• Usually  the application scientist in 

charge of the app.
– The user

• Usually an associate or client of the 
provider.

• Is provided a capability token by the 
provider to run the application.

• The capability token
– An xml document (SAML) signed by the 

provider that says the user has 
permission to access the service.

• The factory service
– Only accepts requests signed by the 

user and containing the required 
capability token. 
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Example: Rendering a Storm
• Take WRF output, 
• move it to a cluster, 
• Launch an “OGRE” script to render it, 
• move movie to users directory
• (Work by C. Moad, B. Plale, G. 

Kandaswami, L. Fang)

WRF 
Simulation

OGRE job
Factory

File
Mover

Portal
Directory
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instance





View the Results



Component Models
• Frameworks used here

– Portlets – the component model for the Portal
• JSR 168 industry standard

– CCA – Common Component Model
• XCAT3 distributed computing version

– Web Services composed by GPEL
• GPEL is a grid version of BPEL4WS by Alek

Slominski



Conclusions
• It is possible to integrate the CCA model with 

web/Grid services.
– Each cca provides port is a web service (OGSA)
– Web services are cca components \

• Either one provides port with returned values, or
• One input provides port and one output uses port.
• Notification an important standard “uses port”.   

• Security must be built-in from day one.
– It is the single most difficult part of making this work.

• It is possible to wrap legacy applications as  a 
web-service-based component using a factory 
pattern.

• Interoperability between component frameworks is 
an important goal.  Web service standards help. 
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