
BUILDING APPLICATIONS FROM A
WEB SERVICE BASED

COMPONENT ARCHITECTURE

D. Gannon, S. Krishnan, L. Fang,
G. Kandaswamy, Y. Simmhan,

A. Slominski

What this talk is about
• How to build secure, reliable applications composed from

distributed components and web services.
• A Motivating Application

– LEAD Project
• Tools to allow research meteorologists to compose powerful applications

that predict mesoscale weather events in better than real time.

Predicting Severe Storms
• To deliver better than real-time predictions

– Data mining of live instrument streams and historical
storm metadata

– Requisition large computational resources on demand
to start a large number of simulations

• Mine simulation outputs to see which track real storm evolution.
• Refine scenarios that match incoming data.

– May Need to requisition bandwidth to make the needed
data analysis possible.

– May require real-time re-alignment of instruments.
– Workflows may run for a long time and they must be

adaptive and very dynamic

Predicting Severe Storms

Lightning
Data Server

NEXRAD
Radar

Data Server

Satellite
Data Server

Surface and
Upper-Air

Data Server

SUNY AlbanySUNY Albany

Wisconsin/SSECWisconsin/SSEC
NASA, NASA, NOAAPortNOAAPort
EROS Data CenterEROS Data Center

I D
 D

I D
 DI D D

I D D

Historical
Observations and

Model Output

Operational
Model Grids
and Server

Project Project
CONDUITCONDUIT

I D D

NOMADSNOMADS
NCDCNCDC

Hydrologic
Data Server

I D
 D

NWS RiverNWS River
Forecast CentersForecast Centers

Air Quality
Data Server

EPAEPA

I D D

GPS
Meteorological

Data Server

SuomiNetSuomiNet I D D

Oceanograp
hic Data

DODSDODS

Digital Library
Holdings

DLESEDLESE

Demographic
Data Server

Field Program &
User Generated

Data
UCAR/JOSSUCAR/JOSS

Individual InvestigatorsIndividual Investigators

Abilene/NGI

I D D

I D
 D

I D
 D

Large scale, real-time
Simulation Grid

The LEAD project
Univ. of Oklahoma

Typical, Very Simple, LEAD Scenario
• Search for data, run a simulation and catalog results.

– Query metadata catalog for a dataset
– Use the result for a large WRF simulation
– Allocate storage on a remote resource
– Move the WRF output to that allocated space
– Record the output location and computation history in a metadata

catalog.

• How does a user describe such a scenario as a workflow or
distributed application?

• How do we free the user from details of distributed
computing in a service oriented architecture?

• What does a service architecture mean in this context?
• Can it be done by a component composition approach?

Common Comp. Architecture (CCA)
• Started in mid 90s.

– The Common Component Architecture
– Four different implementations exist

• SciRun II
• Caffene (Sandia)
• Decaf (Livermore)
• XCAT (Indiana/Binghamton)

– A specification for component design for parallel and
distributed applications

• A Few words about the architecture and
applications

CCA Concepts
• Ports: the public interfaces of a component

– defines the different services provided by a
component and the ways the component uses
other services and components.

Image Processing
Component

setImage(Image I)

Image getImage()

adjustColor()

setFilter(Filter)
calls doFFT(…)

Provides Ports - interfaces
functions (services) provided by component

Uses Ports - interface of a
service used by component

Acme
FFT

component

• Connect uses Ports to Provides Ports.

Building Applications by Composition

Image Processing
Component

getImage()

adjustColor()

Image tool graphical interface component

Image
database

component

setImage(…)

doFFT(…)

Community Climate System Model
Atmosphere

Ocean

Sea Ice

Land

River

Flux Coupler

Control

Earth System Modeling Framework CCA
Prototype

• The Climate Component
is Control
– Atmosphere Component
– Ocean Component
– Atmosphere to Ocean

Transformer
– Ocean to Atmosphere

Transformer

Quantum Chemistry
• Design of CCA integration of NWChem and

MPQC. (A work in progress)
– One is Fortran and the other C++
– One standard interface using CCA/Babel/SIDL.

Combustion Modeling
• The High level model of the system integration is

refined into the component composition

Experience with CCA
• The effort to “re-factor” applications can be very

difficult.
– Where are the component boundaries?
– Who owns large data structures?

• Make the data structure a component.
– What are the correct port Interfaces?

• Can’t interoperate unless they share the same interface type.
– No quantitative results yet.

• The positive
– Production codes are just becoming mature.
– A serious library of components is starting to emerge.

• Now beginning to understand components for
distributed apps

CCA components as Web Services
• Each Provide port can be a complete web service

– Web service with more than one port are not very well
defined

• Uses ports become web service “client stubs”.
• Connection is then a binding between a client stub

and a provided service.
• XCAT3 implements this feature.

– Uses python as the scripting language.
• What about using web/grid services as

components?

Working with Web Services
• Web Service are not the same as CCA
• Message oriented and not RCP based.

– Send a message to the service
• You may get a response or you may not.

– Depends upon the service semantics.

• No concept of “uses port”.
– However some serves generate messages in

response to messages sent.

Component Programming with Services

• Services in our example are
– Metadata catalog
– Storage Allocator
– WRF Simulation Engine
– Execution history recorder

• The services are assumed to be stateless
or, if stateful, they are transient.

• Services have input messages and
output messages.
– Each message may have multiple parts
– An input message may have its parts come

from different sources
– Outputs may be sent to multiple sources
– A Notification event is often generated as an

additional output.

Metadata
Catalog

Metadata
Catalog

query

input

output

Query results

Metadata
Catalog

Metadata
Catalog

reference
input

output
notification

mdata

The Workflow

WRF
Factory

Storage requirements Space
Allocator
Space

Allocator

File MoverFile Mover

“done”

“done”

Metadata
Catalog

Metadata
Catalog

“done”

Resource info

Experiment Name
(Notification Topic)

Output URL

Notification
Broker

Final URL

Parameter file

Event
Listener
Event

Listener

“done”

Metadata
Catalog

Metadata
Catalog

query

Services, state and context
• How do you manage services with multiple

“related clients”?

Argument 1

Argument 2Argument 2

multiplymultiply

“contex12”, 3

“context12”, 2

“context12”, 6

Questions
• Can we compile such a “graph picture” into a

running distributed application?
– What type of application is it?

• Workflow? Statically connected distributed components?

– How is synchronization handled?
– How is failure managed?

• How and when are specific resources allocated for
the computational parts?

• Can the resulting workflow be turned into another
service to be used by another?

• What are the security implications?

Several Possible Solutions
• Triana, Kepler, Taverna

– All excellent examples of tools to compose workflows
using graphical tools.

• Each is based on an approach where the workflow
engine is based on an interpretation of the
execution graph.

• Triana has been extended to incorporate web
services by means of a component proxy.

• We need something that is more appropriate for
dynamic, long running workflows
– BPEL4WS is the most powerful workflow language, but

it is not very “friendly”.
– Can we compile graphical specs into a BPEL spec?

A Three Level Design
• Front End

– A Grid portal with tools to build and launch distributed
application from remote component services.

• Allow scientists to compose workflow scenarios

• The Middle
– Application factories and security services

• The Back End
– Composing workflow from distributed web service

components. Compiles workflow into a BPEL extension
we call GPEL.

Front End: The Portal

The User’s View of the Grid

The Portal as a Grid Access Point
• The Portal Server provides

the users Grid Context.

SecuritySecurity
Data Management

Service

Data Management
Service

Accounting
Service

Accounting
ServiceLoggingLogging

Event ServiceEvent Service

PolicyPolicy
Administration
& Monitoring

Administration
& Monitoring

Grid OrchestrationGrid Orchestration

Registries and
Name binding

Registries and
Name binding

Reservations
And Scheduling

Reservations
And Scheduling

Open Grid Service Architecture Layer

Web Services Resource Framework – Web Services Notification

OGCE or
GridSphere

Grid Portal Server

OGCE or
GridSphere

Grid Portal Server

https

Physical Resource Layer

SOAP &
WS-Security

Portal Architecture
• Building on Standard Technologies

– Portlet Design (JSR-168) IBM, Oracle, Sun,
BEA, Apache

– Grid standards: Java CoG, Web/Grid Services
• User configurable, Service Oriented
• Based on Portlet Design

– A portlet is a component within the portal that
provides the interface between the user and
some service

– Portlets can be exchanged, interoperate

Po
rt

al
 c

on
ta

ne
r Local

Portlets

Grid Service
Portlets

Java
COG
API

Java
CoG
Kit

Grid Services

Grid
Protocols

GRAM,
MDS-LDAD
MyProxy

SOAP ws call Grid Services

Web Services

Client’s Browser

The Middle Tier:
Making Applications into Services

Visible to the Portal & User

How do users interact with Grid Services?
How do we maintain reliable Grid Services?

What is the security model?

User-Portal-Service Interaction
• Grid Services with user interfaces are mediated by the

portal.
– The Grid service can keep an interface client to itself as a WS

resource which can be loaded by the server and presented to the
client.

– Allows security to be https from browser and ws-security from portal
server to Grid service.

User’s Browser

Portal
Server
Portal
Server

Grid
Service
Grid

Service

interface

Ws resources

2. Auth & request
Interface resource

1. Click on service link

3. Return interface
code to server

4. Interface
Rendered for user

5. Responses
From user in soap
Or http:post

6. Reply and
Response tunneled
trhough server

For example: Component Composer
• An interactive workflow

composer.
– Component database and

workflow compiler is
provided by the grid service

• which also provides the
interface tool.

– MVC pattern.
– Composer allows

• Component selection
from library

• Drop and drag place-
ment and connection
establishment

• Save and load graph
functions.

The Most Common Question
• How can I turn my entire application into a

component or grid service?
• I want to provide my application as a service

for others to use.
– But I don’t want too many others to use it.
– I can’t get my friends accounts?

Wrapping Science Apps as Services

• The Factory Pattern
– A Factory is a web

service that creates a
running instance of an
application for
authorized users.

– A factory client allows
app user to:

• Specify needed input
files and other
parameters

• Indicate choice among
known execution hosts
where app is deployed.

My Application Factory

App. parameters
Upload your input file url

Running App
instance

The Portal Factory Service Generator
• Start with

– A Deployed Application
• A script to run it.
• A list of all needed input files
• A list of all generated output files.

• Write a AppService Document
– Upload this to the portal Factory

generator in the portal.
• A new Factory is started for you.

– A portal client interface to the factory
is also automatically generated. App Factory

Browser

Portal
Server

https

Create and
Launch factory

Upload
AppService Doc

The Security Model
• The parties:

– The service provider
• Usually the application scientist in

charge of the app.
– The user

• Usually an associate or client of the
provider.

• Is provided a capability token by the
provider to run the application.

• The capability token
– An xml document (SAML) signed by the

provider that says the user has
permission to access the service.

• The factory service
– Only accepts requests signed by the

user and containing the required
capability token.

Bob’s App Factory

Mary’s Browser

Portal Server
Mary’s proxy &
capabilities

https

Soap +
dig. sig +
cap. token

Proxy &
Capability

Server

Proxy &
Capability

Server

Fire wall

Example: Rendering a Storm
• Take WRF output,
• move it to a cluster,
• Launch an “OGRE” script to render it,
• move movie to users directory
• (Work by C. Moad, B. Plale, G.

Kandaswami, L. Fang)

WRF
Simulation

OGRE job
Factory

File
Mover

Portal
Directory

OGRE
instance

View the Results

Component Models
• Frameworks used here

– Portlets – the component model for the Portal
• JSR 168 industry standard

– CCA – Common Component Model
• XCAT3 distributed computing version

– Web Services composed by GPEL
• GPEL is a grid version of BPEL4WS by Alek

Slominski

Conclusions
• It is possible to integrate the CCA model with

web/Grid services.
– Each cca provides port is a web service (OGSA)
– Web services are cca components \

• Either one provides port with returned values, or
• One input provides port and one output uses port.
• Notification an important standard “uses port”.

• Security must be built-in from day one.
– It is the single most difficult part of making this work.

• It is possible to wrap legacy applications as a
web-service-based component using a factory
pattern.

• Interoperability between component frameworks is
an important goal. Web service standards help.

	BUILDING APPLICATIONS FROM A WEB SERVICE BASED COMPONENT ARCHITECTURE�
	What this talk is about
	Predicting Severe Storms
	Predicting Severe Storms
	Typical, Very Simple, LEAD Scenario
	Common Comp. Architecture (CCA)
	CCA Concepts
	Building Applications by Composition
	Community Climate System Model
	Earth System Modeling Framework CCA Prototype
	Quantum Chemistry
	Combustion Modeling
	Experience with CCA
	CCA components as Web Services
	Working with Web Services
	Component Programming with Services
	The Workflow
	Services, state and context
	Questions
	Several Possible Solutions
	A Three Level Design
	Front End: The Portal
	The Portal as a Grid Access Point
	Portal Architecture
	The Middle Tier:�Making Applications into Services Visible to the Portal & User
	User-Portal-Service Interaction
	For example: Component Composer
	The Most Common Question
	Wrapping Science Apps as Services
	The Portal Factory Service Generator
	The Security Model
	Example: Rendering a Storm
	View the Results
	Component Models
	Conclusions

