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ABSTRACT
The promise of multiwavelength astronomy has been tempered by the large disparity in
sensitivity and resolution between different wavelength regimes. Here, we present a statistical
approach which attempts to overcome this by fitting parametric models directly to image data.
Specifically, we fit a model for the radio luminosity function (LF) of star-forming galaxies to
pixel intensity distributions at 1.4 GHz coincident with near-IR selected sources in COSMOS.
Taking a mass-limited sample in redshift bins across the range 0 < z < 4, we are able to fit
the radio LF with ∼0.2 dex precision in the key parameters (e.g. �∗,L∗). Good agreement is
seen between our results and those using standard methods at radio and other wavelengths.
Integrating our LFs to get the star formation rate density, we find that galaxies with M∗ >

109.5 M� contribute �50 per cent of cosmic star formation at 0 < z < 4. The scalability of
our approach is empirically estimated, with the precision in LF parameter estimates found to
scale with the number of sources in the stack, Ns, as ∝ √

Ns. This type of approach will be
invaluable in the multiwavelength analysis of upcoming surveys with the Square Kilometre
Array pathfinder facilities: LOFAR, ASKAP and MeerKAT.
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1 IN T RO D U C T I O N

The cosmic history of star formation, typically summarized as the
redshift evolution of the star formation rate density (SFRd; Lilly
et al. 1996; Madau et al. 1996; Hopkins & Beacom 2006; Behroozi,
Wechsler & Conroy 2013), is widely regarded as one of the bench-
mark measurements of galaxy evolution; its precise measure is
a key goal of modern observational astrophysics, and any model
for galaxy formation must replicate these observations to be taken
seriously.

The rapid evolution of observational facilities in the last decade,
in particular upgrades to the wide-field optical (with the Advanced
Camera for Surveys in 2002) and near-IR (with Wide Field Camera
3 in 2009) capabilities of the Hubble Space Telescope (HST), has re-
sulted in robust estimates of the SFRd out to at least z = 7 (Bouwens
et al. 2006, 2008, 2011; McLure et al. 2010, McLure et al. 2013).
However, the HST view of the high-z Universe is effectively limited
to rest-frame UV and optical wavelengths and hence to relatively
unobscured galaxies. This limitation is worrisome, as populations
of highly obscured star-forming (100–1000 M� yr−1) galaxies are
seen in the far-IR and submm (e.g. Hughes et al. 1998). Large-scale
submm surveys have shown that the number density of these so-
called ultraluminous IR galaxies (ULIRGs) are dwarfed by the more
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moderate star-forming population at all redshifts (e.g. Reddy et al.
2008), although they do occur in large enough quantities to cause
tension with numerical models of galaxy formation (e.g. Baugh
et al. 2005; Lacey et al. 2010). Existing far-IR/submm facilities do
not possess the sensitivity to probe even moderate SFRs (i.e. SFR <

100 M� yr−1) at z > 1 and hence the overlap in UV/optical and
far-IR/submm identified galaxies at high redshift is small.

This situation is clearly unsatisfactory; observing the full range in
star formation rates (SFRs) at high redshift requires measurements
at two distinct wavelengths which can only be cross-calibrated in the
nearby Universe (i.e. z < 0.2). Deep, wide-area observations in the
UV/optical would offer the observationally cheapest route to rec-
onciling this disconnect. However, the strong relationship between
SFR and dust obscuration means that the galaxies with the highest
SFRs may be amongst the faintest at the UV/optical wavelengths
(e.g. Meurer, Heckman & Calzetti 1999; Hopkins et al. 2001;
Kewley et al. 2002; Reddy et al. 2010; Roseboom et al. 2012). More-
over, there is some evidence that UV/optical tracers of the level of
dust obscuration (e.g. the UV slope, βUV, the ratio of Balmer lines)
may only be accurate at moderate SFRs (i.e. <100 M� yr−1; Buat
et al. 2010; Reddy et al. 2010; Roseboom et al. 2012).

Thus, there is no alternative but to push the sensitivity limits
of SFR tracers which are not affected by dust obscuration. In re-
cent years, it has become de rigueur to build vast multiwavelength
data sets on a number of well-known extragalactic survey fields
(e.g. GOODS, Lockman Hole, COSMOS, etc.). While the disparity
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in observational capabilities across the electromagnetic spectrum
has limited the usefulness of multiwavelength studies of individual
objects, the practice of stacking less-sensitive data sets (typically
X-ray, far-IR/submm, radio) at the positions of the deepest cata-
logued sources (typically optical/near-IR) has become common-
place. For imaging afflicted by white noise, the stacked signal-
to-noise should increase proportionally to the square-root of the
number of sources in the stack. Hence, for extragalactic fields with
tens of thousands of sources, the aggregate, dust-unbiased SFRs
can be robustly estimated at a level ∼100 times fainter than the
detection limit for individual sources.

However, traditional stacking methods can only recover the mean
(or median) SFR of any sample, and hence only the mean relation-
ship between SFR and the binned variable can be established. To
counter this, it is common to bin the sources in more than a single
parameter, e.g. the stellar mass–redshift plane (Oliver et al. 2010,
Karim et al. 2011; Roseboom et al. 2013). This approach has the
significant drawback of reducing the number of sources, N, in each
stack, which in turn reduces the stacked signal by a factor propor-
tional to N2.

In this paper, we present a statistical framework that allows the
underlying distributions, i.e. P(SFR|M∗, z, βUV, . . . ) to be extracted
in a parametric way from the stack. The clear advantage of this ap-
proach is that it allows the distribution in SFR to be constrained
using all the available sources in a consistent way. To illustrate
this point, Karim et al. (2011; hereafter K11) perform a stack-
ing analysis with practically the same data set we will use here;
optically/near-IR-selected galaxies stacked into Very Large Array
(VLA) imaging in COSMOS. They split their sample into 9 × 7
redshift–mass bins and determine the mean SFR in each bin via
median stacking of cutouts of the radio data around each source.
If no binning is required, and the precision in the parametric fit
scales as

√
N , then our method could provide estimates of the

SFR–M∗–z relation with ∼8 times more precision (∼3 if we still
bin in redshift). These types of gains are non-negligible considering
the observational expense required to improve the raw sensitivity
of large multiwavelength data sets like COSMOS by these factors.

In Section 2, the method used to extract P(SFR|z) from a stack of
galaxy positions is presented, Section 3 describes the data sets used
to test this method and Section 4 presents our results. Section 5.1
compares our results to the literature and discusses the implications
of our results in the context of the cosmic SFRd, while Section 5.2
discusses the potential future applications for this method and pos-
sible obstacles. Finally, Section 6 presents our conclusions.

Throughout we assume a � cold dark matter cosmology with
�� = 0.7, �m = 0.3 and H0 = 70 km s−1 Mpc−1. Where relevant,
all quoted quantities assume a Chabrier (2003) Initial Mass Function
(IMF).

2 PA R A M E T R I C S TAC K I N G M E T H O D

2.1 Basic framework

If we consider a pixelated sky image d in units of flux density per
telescope beam, then for a list of sources with known positions x,
the best estimate of the mean flux density will be given by
∑

dx/σ
2
x∑

1/σ 2
x

,

where dx and σ x are the pixel flux density and noise estimates
for positions x, respectively. Turning this around, if the true flux

densities at positions x are f x the observed, pixel intensities dx will
be simply

dx = f x + δ,

where δ is some noise value drawn from a Gaussian distribution;
N (μ = 0, σ x). If a model M can be constructed which predicts the
probability P(f) of a true flux density f for a known source, then the
probability of observing a particular pixel intensity d at the location
of that source is

P (d|M,σ ) =
∫ ∞

0

1

σ
√

2π
P (f ) exp

(−(f − d)2

2σ 2

)
df , (1)

and so for a stack of sources x,

P (dx |x, M, σ x) = 	xP (d|M,σ ). (2)

Applying Bayes’ theorem, we see that

P (M, σ x |dx) ∝ P (M)P (dx |x, M, σ x),

and so the best-fitting parameters for the model M can be found by
maximizing the likelihood given in equation (2).

2.2 Building the flux density distribution model

Equations (1) and (2) give a generic framework to fit a stack (i.e.
stack-fit) of flux densities for a set of known positions in the presence
of noise. This framework could be used for parameter estimation in
models with a wide range of purposes, from simple parametrizations
of the number counts (e.g. Mitchell-Wynne et al. 2014) to full-blown
galaxy formation simulations (e.g. Henriques et al. 2009). Here, we
propose to model the rest-frame luminosity distribution function
at a given redshift, z; �̂(l, z). In this scenario, we need to convert
our proposed luminosities to the observed flux density in order to
use equation (2). Considering both the luminosity distance and a
k-correction as a function of redshift, we obtain

P (f ) = �̂(4πD(z)2k(z)f , z)∫ ∞
l=0 �̂(l, z) dl dz

, (3)

where D(z) is the luminosity distance and k(z) the k-correction at
a redshift z. It is worth emphasizing that P(f) here is the probabil-
ity of a particular galaxy at a known position having a true flux
density f. If for a given sample �̂ is independent of redshift, then
we can simply propose �̂(l) and remove the integral over dz in the
denominator of equation (3). Similarly, if we can split our sample
into narrow redshift bins then the simplest non-parametric estimate
of the redshift evolution can be obtained by measuring �̂(l) in each
redshift bin independently. This is the approach we will take later
in Section 3.2.

Equation (3) is analogous to the formula for P(Mabs, z), where
Mabs is the absolute magnitude, which appears in the Sandage, Tam-
mann & Yahil (1979; hereafter STY) maximum likelihood luminos-
ity function (LF) estimator. However, in our scenario the sample is
not selected at the wavelength at which �̂ is determined, but by a
selection at some other wavelength (or physical galaxy property). In
the STY formalism, the integral in the denominator of equation (3)
would have a lower bound equal to the minimum observable lumi-
nosity at the redshift of the source. However, in our formalism, the
sources in the stack can have no such limit and so the lower bound
of this integral is zero. This means that whatever parametric form
we choose for �̂ must have a finite integral from zero to infinity,
otherwise the ratio in equation (3) will become undefined.

If the redshifts for each source are not known accurately, or only
the redshift distribution for the population of sources is known (as
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is the case for e.g. BzK galaxies), then the probability density of the
redshift, P(z), can be integrated over, i.e.

P (f ) = 1∫ ∞
l=0 �̂(l, z) dl dz

∫ ∞

z=0
P (z)�̂(4πD(z)2k(z)f , z) dz. (4)

Similarly, if the k-correction cannot be described as a simple
function of redshift then whatever other parameters, η, that are
required to describe the k-correction must be added to the integral,
i.e.

∫ ∫
k(z, η) dz dη.

As is the case with the STY LF estimator, equation (3) is insen-
sitive to the normalization of the LF model �̂. The value of the
normalization can be recovered by considering the total number of
observed sources, their visibility and various incompletenesses, as
we will detail in Section 2.4.

2.3 Dealing with incompleteness

Armed with equations (1) and (4), we have the statistical framework
needed to fit a model specified in terms of rest-frame luminosities
directly to the pixel stack. It is worth noting that this setup as-
sumes implicitly that the input catalogue to the stack is complete.
This is not an onerous requirement, the depth of optical/near-IR
surveys is such that it is possible to construct complete volume-
or mass-limited samples out to high redshift. However, it would
be preferable to generalize our method to accommodate known in-
completeness in the input catalogues. To accomplish this, we need
to calculate P (f |θ ), where θ are the properties of a source in the
catalogue providing the positions, e.g. apparent magnitude, stellar
mass, photometric redshift, optical colour, etc. If P(f) and P (θ ) are
independent, then

P (f |θ ) = P (f )P (θ ), (5)

i.e. we simply multiply P(f) by the estimated completeness for
sources with properties θ .

2.4 Determining the normalization

In converting our model �̂(l) to a probability distribution, the abso-
lute normalization, �̂∗, is lost. To recover this, we need to determine
which value of �∗ will give the correct number of observed galaxies,
N, i.e.

�∗ = n̄∫ ∞
l=0 �̂(l, z) dl dz

, (6)

where n̄ is the mean density for objects in the stack. For a complete,
volume-limited sample of sources, it is clear that

n̄ = N

V
,

where V is the observable volume for sources in the stack list.
For non-complete stack lists with variable completeness, C, and
observable volumes, Vmax, this becomes

n̄ =
∑

x

[CxVmax]−1 (7)

3 DATA A N D M O D E L SE T U P

3.1 ULTRAVISTA and VLA data in COSMOS

To use our method effectively, we need two overlapping data sets;
an input catalogue which is effectively deeper and provides redshift

estimates and an image which has pseudo-white noise and simi-
lar angular resolution to the input catalogue (to avoid issues with
confusion). The ULTRAVISTA photometric redshift catalogue of
Muzzin et al. (2013a) and the VLA–COSMOS 1.4 GHz radio image
presented by Schinnerer et al. (2007) satisfy these two requirements,
respectively. The Muzzin et al. (2013a) catalogue provides photo-
metric redshifts and stellar mass estimates for over 260 000 galaxies
to a limiting magnitude of Ks < 24.35 (3σ ) from the combination
of the 1.63 deg2 ULTRAVISTA Y, J, H, Ks imaging (McCracken
et al. 2012) with overlapping ground-based and HST optical imag-
ing of the COSMOS field (see Scoville et al. 2007). Only reliable
sources from the ULTRAVISTA catalogue are considered here by
requiring the metrics STAR = 0, K_FLAG < 4, CONTAMINATION! = 1
and NAN_CONTAM < 3, and a magnitude of Ks < 23.4, as recom-
mended by Muzzin et al. (2013a). These flags allow the removal
of stars as well as sources with corrupted photometry due to bad
pixels and nearby bright sources. This magnitude limit is chosen as
it represents the 90 per cent completeness level of the catalogue.

Meanwhile, the VLA imaging of the COSMOS field consists of
a mosaic of 23 tiled pointings of the VLA at 1.4 GHz in the A and
C configuration (Schinnerer et al. 2007). The image has an rms of
∼10 μJy beam−1 at the field centre and a beam full width at half-
maximum of 1.4 arcsec × 1.5 arcsec. In this work, we only make
use of the 1.6 deg2 of the mosaic that overlap with ULTRAVISTA
coverage. The publicly available image has been ‘cleaned’, i.e. point
sources above 40 μJy responding to the synthesized (‘dirty’) beam
have been removed and replaced with a Gaussian beam conserving
the peak flux density. For our peak pixel stacks this has no effect, as
the peak flux density is conserved in the cleaning process; however,
this does have some impact on the integrated-to-peak flux density
ratio, as we will discuss in Section 3.3.

3.2 Modelling the mass-limited radio LF

To use equation (3), we need to define some parametric form
for ˆ�(l, z). As we have high-quality photometric redshifts for all
sources in the input catalogue, we prefer to divide our sample into
redshift bins across which the evolution of the LF is negligible and
fit for ˆ�(l) in each of these redshift bins independently. This allows
the redshift dependence of the LF to be probed in a non-parametric
way. Typically, the radio LF of star-forming galaxies is assumed to
follow a modified Schecter function (Saunders et al. 1990):

�̂(l) = �∗
(

l

l∗

)1−α

exp

[
− 1

2σ 2
LF

log2
10

(
1 + l

l∗

)]
dl

l
. (8)

Motivated by this, and to allow direct comparison with literature
estimates, we also assume that the luminosity distribution for our
mass-limited sample in each redshift bin is described by equation
(8). As the radio emission in these star-forming galaxies will be
dominated by the synchrotron radiation, we assume that the radio
Spectral Energy Distribution (SED) can be described as Sν ∝ ν−αs .
Thus, the k-correction is given by k(z) = (1 + z)1−αs . Here, we
assume α = 0.8 (Condon 1992).

Finally, as we are be working with a mass-limited sample, we
require that the integral of �̂(l, z) be finite, i.e. α < 1.

3.3 Redshift binning and model fitting

We build samples for input to our stack-fitting method by slic-
ing the ULTRAVISTA catalogue into nine redshift bins across the
range 0.1 < z < 4. In order to restrict the sample to only star-
forming galaxies, i.e. excluding AGN and passive galaxies, we use
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the UVJ colour selection first described by Williams et al. (2009).
Specifically, we require rest-frame [U − V] ≤ 0.88[V − J] + c
where c = 0.69 at z < 1 and c = 0.59 at z > 1. Table 2 details
the redshifts and numbers of galaxies in our redshift bins. As an
additional restriction, we consider only sources with stellar mass
M∗ > 109.5 M�, the �50 per cent completeness limit for the UL-
TRAVISTA sample at the highest redshifts we consider.

For each source in the ULTRAVISTA catalogue, we calculate a
completeness to use in equation (7). The completeness correction
is estimated by comparing the number of observed sources in a
mass bin (with �M∗ = 0.5) to the predicted number taking into
account the geometry of the ULTRAVISTA survey, the redshift and
the parametric fit to the mass function for star-forming galaxies
given by Muzzin et al. (2013b).

For each redshift bin, we build a stack of radio flux densities
by taking the value of the pixel in the VLA-COSMOS image that
corresponds to each position. In addition to the single peak pixel
stack, we also build a 2D image stack. This 2D stack is used to assess
the integrated-to-peak flux density conversion ratio for each set of
objects. For point sources, the integrated-to-peak flux density ratio
should be unity; however, some of the sources in our stacks may be
extended (especially at low z), and bandwidth smearing at the edge
of the VLA pointings has the effect of making sources marginally
extended. To determine the correct integrated-to-peak flux density
ratio for each of our stacks, we produce 501 × 501 pixel stacks for
each of our redshift bins. The median image is produced across these
stacks and then de-convolved with the dirty beam. The peak flux
density is then compared to the integrated value across the median
image. The integrated-to-peak flux density ratios (Sint/Speak) for
each redshift bin assessed in this way are given in Table 2. It is
interesting to compare our values to those of K11 who performed
a similar stacking analysis of the VLA-COSMOS data. While they
use a slightly different map (the COSMOS internal Deep map rather
than the public Large Project map) and redshift binning, the trend
of large Sint/Speak at low-z decreasing to a typical value of ∼1.7–2
at z > 0.5 is also seen.

After correcting the pixel stack values by Sint/Speak, we fit the
model specified by equations (1) and (3) using Monte Carlo Markov
Chain (MCMC) methods. Specifically, we use an implementation
of the affine-invariant sampling proposed by Goodman & Weare
(2010). A detailed discussion of this MCMC approach and its ap-
plication to astronomy, can be found in Foreman-Mackey et al.
(2013); we briefly summarize the main points here. The affine-
invariant sampling method makes use of a set of test positions,
or ‘walkers’, on the posterior probability. In each iteration, the
proposed ‘step’ for a walker is generated by defining a vector in
parameter space between it and another randomly chosen ‘walker’
and moving along this vector by a random fraction between 1/a
and a, where a is a tuning parameter typically set to 2. Proposed
steps are then accepted with a probability such that MCMC chain
is ‘balanced’ (i.e. it is equally likely to step from x → x′ as its
inverse x′ → x). Here, we use our own IDL implementation of the
affine-invariant ensemble sampler; for each stack, we utilize 200
walkers and the tuning parameter a = 2. The correlation length (i.e.
the number of steps required for the chain to retain no knowledge of
its starting point) for each parameter is measured using the method
of Goodman & Weare (2010) and the MCMC chain run until the
number of steps exceeds 10 times the maximum correlation length
amongst all of the free parameters.

The model described in Sections 2 and 3 contains five free pa-
rameters: the Gaussian noise in the radio image, σN; the LF normal-
ization, �∗; the characteristic luminosity, L∗; the faint end slope, α;

Table 1. Details of parameters used to fit
pixel stacks.

Parameter Min Max μ σ

σN
a 0 50 13.6 1

�∗ −10 12 – –
L∗ 18 25 – –
α 0 1 – –
σLF

a 0 2 0.6 0.1

a Gaussian prior.

and the Gaussian term in the LF, σ LF. For the parameters σN and
σ LF, we assume a Gaussian prior, while for the others we assume
a ‘top-hat’ prior with an arbitrarily chosen range. A summary of
the model parameters and their priors is given in Table 1. For the
image noise, σN, we set the prior to the value obtained from the
standard deviation of all the pixels in radio image within the UL-
TRAVISTA coverage, giving σN = 13.6 ± 1. Meanwhile, the prior
for the LF parameter, σ LF, is set to the best estimate and uncertainty
from fitting equation (8) to the measurements of the local radio LF
for star-forming galaxies from Condon et al. (2002) and Mauch &
Sadler (2007).

4 R ESULTS

The median stack-fit estimates and 68 per cent confidence intervals
for the model parameters are given in Table 2. Fig. 1 shows the
distribution of flux density in stack pixels for the nine redshift bins
compared to both the median stack-fit and a simple Gaussian fit
to the pixel stack. Also shown is the median of the flux density
distribution, which is always found to take a positive value. In each
redshift bin, there is an excess of pixels with positive values over
the Gaussian model, validating our basic model assumption.

While the degeneracies between the model parameters make di-
rect interpretation of the median stack-fit parameters problematic,
there are some noteworthy trends. Reassuringly, the estimates of
the noise in the map are consistent across the nine redshift bins.
Some real variation in this quantity is to be expected due to the
variation in Sint/Speak from both extended sources and bandwidth
smearing. Apart from the lowest redshift bin (where we would ex-
pect many sources to be resolved), the variation in σN is within the
measurement errors.

The relationship between �∗(z) and L∗(z) is interesting. At z � 1,
�∗(z) remains roughly constant, while L∗(z) increases steadily, i.e.
pure luminosity evolution. This picture is consistent with simple
models for the evolution of star-forming galaxies in the radio from
previous work (e.g. Haarsma et al. 2000; Smolčić et al. 2009). At
z � 1, �∗(z) decreases rapidly while L∗(z) continues to increase
strongly to our limit of z ∼ 4. While radio LF measurements for star-
forming galaxies do not currently exist above z = 1, this evolution
in the LF parameters is in agreement with the known trend for star-
forming galaxies from other tracers at high redshift (e.g. Sobral
et al. 2012; Gruppioni et al. 2013).

5 D I SCUSSI ON

5.1 LFs and the cosmic SFRd

The stack-fit mass-limited radio LFs for star-forming galaxies are
shown in Fig. 2. The 68 per cent confidence interval on our LF
estimates (and subsequently SFRd estimates) are constructed by
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Table 2. Details of the stacking bins and median fit values to the stacks achieved via MCMC. In each case,
the quoted errors represent the 68 per cent confidence interval.

z N 〈S1.4〉 Sint/Speak σN �∗ L∗ α σLF

(µJy) (µJy) (Mpc−3) (W Hz−1) (W Hz−1)

0.1–0.3 1083 12.5 3.6 13.8+0.5
−0.5 −2.72+0.10

−0.19 20.4+0.4
−0.3 0.36+0.21

−0.25 0.63+0.05
−0.06

0.3–0.6 5585 7.5 2.65 13.0+0.2
−0.2 −2.86+0.14

−0.13 20.7+0.3
−0.2 0.19+0.20

−0.14 0.63+0.02
−0.03

0.6–0.9 12 095 5.8 1.88 13.0+0.1
−0.1 −2.79+0.08

−0.06 21.2+0.1
−0.1 0.08+0.12

−0.06 0.58+0.02
−0.02

0.9–1.2 13 319 5.7 1.70 13.0+0.1
−0.1 −2.92+0.06

−0.05 21.4+0.1
−0.1 0.06+0.08

−0.04 0.58+0.02
−0.02

1.2–1.5 11 517 4.9 1.80 13.0+0.1
−0.1 −3.05+0.10

−0.08 21.6+0.2
−0.1 0.12+0.15

−0.09 0.60+0.02
−0.02

1.5–2 13 376 4.7 1.76 13.1+0.1
−0.1 −3.26+0.14

−0.12 21.7+0.3
−0.2 0.16+0.18

−0.12 0.67+0.02
−0.02

2–2.5 6255 4.1 1.90 13.2+0.2
−0.2 −3.41+0.10

−0.18 22.1+0.4
−0.3 0.32+0.23

−0.23 0.65+0.03
−0.04

2.5–3 3606 4.2 1.98 13.4+0.2
−0.2 −3.60+0.08

−0.22 22.3+0.5
−0.4 0.38+0.25

−0.27 0.67+0.04
−0.05

3–4 1257 4.7 1.92 13.3+0.4
−0.4 −4.29+0.08

−0.22 22.6+0.5
−0.5 0.41+0.26

−0.29 0.67+0.06
−0.07

Figure 1. Pixel flux density distribution compared to both the median-fit model (red solid line) and a simple Gaussian fit (blue dotted line). The median of the
flux density distribution is shown as a grey dashed line and quoted in the top-right corner. In each case, it can be seen that there is both a non-zero median of the
flux density distribution and an excess of pixels in the stack with positive values over the simple Gaussian fit, validating the basic assumptions of our method.

generating Monte Carlo realizations of our best-fitting parameters,
using the covariance matrix output from the MCMC chains. In
each realization, the normalization of the LF is forced to equal
the completeness-corrected number of sources in the field, with an
additional noise term taking into account both Poisson noise and
cosmic variance. The effect of cosmic variance is estimated using
the results of Moster et al. (2011), and found to be 6 per cent for the
lowest redshift bin, increasing to 18 per cent for the highest redshift
bin.

Directly comparing our LF stack-fits to literature values is com-
plicated by the fact that our sample is stellar mass limited, rather than
radio luminosity limited. Nonetheless, we compare our results to to-

tal LF’s in the radio from Best et al. (2005) and Smolčić et al. (2009),
the latter of which makes use of the same VLA-COSMOS imag-
ing as this work. The two sets of radio LFs show good agreement
with our estimates, although the two highest redshift bins probed
by Smolčić et al. (2009) suggest an upturn at L1.4 � 1024.5 W Hz−1

that is not possible for our parametric fits to replicate.
It is also interesting to compare our results to the median radio

luminosities found via traditional stacking by K11. For each redshift
bin in Fig. 2, we show the median radio luminosity for M∗ >

109.5 M� from K11 as a purple star, while the median luminosity
of our parametric fit is shown as a red dashed line. It can be seen that
the K11 values agree well with the median luminosity of our LFs,
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Figure 2. LFs from stack-fitting to the radio pixel intensity stacks. The solid dashed line is the LF from the median fit parameters given in Table 2 while the red
shaded region is the 68 per cent interval in � at each L1.4. Literature values of the radio LF from other works are also shown as: cyan triangles (NVSS–SDSS;
Best et al. 2005) and blue squares (VLA-COSMOS; Smolčić et al. 2009). Far-IR and mass-limited Hα estimates, converted to radio luminosity assuming star
formation as the common origin, are shown as orange circles (Herschel Far-IR; Gruppioni et al. 2013) and black squares (Hα; Sobral et al. 2014). The purple
star is the median L1.4 found in equivalent mass and redshift bins by K11, while the dotted line represents the median of our parametric fit.

both validating our approach and also demonstrating the power of
our parametric stack-fitting over traditional stacking techniques.

Finally, we compare our results to the total far-IR LF
(Gruppioni et al. 2013) and the mass-limited Hα LF (Sobral et al.
2014). Assuming in all cases that star formation dominates the lumi-
nosity, we can convert the far-IR and Hα measurements to 1.4 GHz
luminosity by combining the SFR calibrations of Kennicutt et al.
(1998) and Bell (2003); L1.4 = LIR + 11.49 and L1.4 = LHα − 19.87,
assuming a Chabrier (2003) IMF. Excellent agreement is found be-
tween our estimate and the far-IR measurements from Gruppioni
et al. (2013) at z > 0.6, while lower redshift bins appear to show an
‘excess’ of far-IR sources over the radio estimates. This result is not
unique to our work and has been noted by previous authors when
comparing radio and far-IR LFs for star-forming galaxies (e.g. Bell
2003; Smolčić et al. 2009).

The comparison with the Hα estimates is especially interesting
as these measurements have been made with the same mass-limit
as our sample. For the 0.3 < z < 0.6 bin, the agreement between
the Hα and radio mass-limited LF is very good. At higher redshifts,
the overall normalization of the Hα and radio LFs agree well, but
the Hα shows a steeper cut-off towards high luminosities (i.e. lower
L∗). This could point to insufficient dust corrections to the Hα

fluxes for galaxies with the highest SFRs (e.g. Roseboom et al.
2012). Alternatively, our radio measurements could be polluted
with emission not related to star formation (e.g. AGN). However, the

agreement seen between the radio and far-IR at high luminosities
means that the far-IR estimates also need to be influenced in the
same way. The physical origin of far-IR emission in ULIRGs (and
by proxy the radio) is an area of some debate, although most studies
agree that it is very difficult to power luminous IR emission at long
wavelengths (i.e. �100 μm) with a process other than star formation
(e.g. Lutz et al. 2008; Hatziminaoglou et al. 2010).

Armed with our LFs for M∗ > 109.5 M� galaxies out to z = 4 and
assuming that the radio luminosity is generated by star formation,
we can ask the question: What contribution do these galaxies make
to the cosmic SFRd? In Fig. 3, we show the cosmic SFRd estimated
by integrating the LFs from Fig. 2 and assuming the SFR calibration
of Bell (2003). Also shown in Fig. 3 is the recent compilation of
total SFRd estimates by Behroozi et al. (2013; hereafter B13), as
well as a mass-limited (M∗ > 109.8 M�) estimate constructed from
the results of Santini et al. (2009). While the error in our estimate
and the scatter in the B13 literature values are significant, it is clear
that galaxies with M∗ > 109.5 M� make up �50 per cent of the
SFRd up to z = 4. This is in good agreement with both the K11 and
Santini et al. (2009) results up to z ∼ 3.

5.2 Future prospects for parametric stack-fitting

From the results above, it is clear that stack-fitting has substantial
benefits if source catalogues at one wavelength are significantly

MNRAS 439, 1286–1293 (2014)

 at R
oyal O

bservatory L
ibrary on N

ovem
ber 20, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1292 I. G. Roseboom and P. N. Best

Figure 3. SFRd for galaxies with M∗ > 109.5 M� as a function of redshift
implied by our LFs (solid line). The dashed lines represent the 1σ uncertainty
on our parametric fit. For comparison is shown the best estimate of the total
SFRd(z) from the compilation of B13 (red shaded) as well as mass-limited
estimates from both the UV (Santini et al. 2009; blue circles) and stacked
radio (K11; purple stars). Both our parametric fits and the literature results
imply that M∗ � 109.5 M� galaxies contribute �50 per cent of the total
SFRd up to z < 4.

deeper compared to overlapping data and a flexible parametric de-
scription of the data can be provided. As we have shown, this tech-
nique is well suited to interferometric radio data, as the disparity in
angular resolution compared to optical/near-IR imaging means that
source confusion is not an issue.

Several large surveys of the extragalactic sky at radio wavelengths
are either underway (e.g. with LOFAR; van Haarlem et al. 2013)
or will commence in the near future (e.g. MIGHTEE, Jarvis et al.
2012; EMU, Norris et al. 2011). These surveys will provide all-sky
observations at comparable depth to the COSMOS data as well as
significantly deeper regions of comparable area. However, none of
these surveys will provide radio imaging that is effectively deeper
than ancillary optical/near-IR data sets. Thus, techniques such as
the one presented here may be invaluable in terms of interpreting
these surveys.

At other wavelengths, large areas of the sky have already been im-
aged at IR/submm wavelengths by Herschel, WISE and SCUBA-2.
Again, overlapping optical/near-IR data sets are significantly deeper
and so the stack-fitting approach may offer significant benefits, with
the caveat that the mismatch in the beam size (roughly a factor of 10
between ground-based near-IR and submm) means that confusion
noise must be taken into account, something which is not currently
accommodated by our method.

While we leave a detailed treatment of implementing our method
in the presence of confusion noise to future work, we briefly consider
here how confusion noise could be accounted for. The simplest
solution to the problem of source confusion is to assume that the
confusion introduces some noise term, similar to the instrumental
noise in equation (1), which is a function of both the instrument
beam and the intrinsic flux density distribution,

P conf(f ) = P (f ) +
∫ ∞

s=0

∫ ∞

r=0
B(r)sP (s) dr ds, (9)

Table 3. Effect of varying Ns

on the precision of the LF pa-
rameters, L∗ and α, and the area
95 per cent confidence ellipse
between these parameters, A95.

Ns σL∗ σα A95

13 376 0.21 0.14 0.19
9515 0.25 0.16 0.26
4577 0.28 0.18 0.36
1828 0.31 0.18 0.56
935 0.39 0.21 0.90
468 0.36 0.20 1.09
182 0.72 0.27 1.55

where B(r) is the one-dimensional beam profile and P(s) is the
number density of sources with intrinsic flux density s. An implicit
assumption of equation (9) is that the sources are randomly dis-
tributed on the sky. In the presence of clustering, if the sources in
the stack can be described by a simple model (e.g. a power law,
or halo occupation model), this can be added to the integral such
that the probability of source occurring within the beam is also a
function of radius from the source, i.e. P(s) becomes P(s, r).

Finally, it is of interest to understand how our method scales with
the number of sources (Ns) in the stacks. For traditional stacking the
signal-to-noise in the stacked signal increases as

√
Ns. However, it

is not obvious how the precision in our model LF parameters should
vary as a function of Ns. To test this, we take the redshift bin with the
most sources, 1.5 < z < 2, from our analysis and sparsely sample it
to simulate the impact of decreasing the number of sources. Details
of this process are given in Table 3.

One difficulty in the analysis of this simulation is that the param-
eters in the model are degenerate, so the individual error estimates
do not fairly represent the true uncertainty. To mitigate this, we
consider the area of the 1σ error ellipse defined by the covari-
ance matrix for each model fit. As σ N and σ LF are constrained by
Gaussian priors (and only weakly degenerate with L∗) and �∗ is
determined from the absolute normalization, we need only consider
the ellipse formed by the uncertainty in L∗ and α. Thus, we also list
the area of the ellipse which contains 95 per cent of the uncertainty
in L∗ and α, A95, in Table 3.

For traditional stacking techniques, the precision in the stacked
estimate increases ∝N1/2. To allow quantitative comparison with
these techniques, we fit the data from Table 3 with a model assuming
that the precision, �, improves with the number of sources to some
fractional exponent, i.e. � ∝ N−1/τ

s . This gives τ = 4.2 ± 0.7 for
σL∗ (Ns), τ = 8 ± 2 for σα(Ns) and τ = 2 ± 0.1 for the 95 per cent
confidence ellipse area (A95). It is clear that the large degeneracies
between the parameters significantly inflate the exponents for the
marginalized parameter uncertainties. However, the area of the error
ellipse between L∗ and α is seen to scale as N−1/2

s , i.e. as the square-
root of the number of sources in the stack, similar to simple stacking
methods.

6 C O N C L U S I O N S

In the last decade, there has been an increasing focus on multiwave-
length approaches to outstanding problems in galaxy formation
and evolution. While multiwavelength tracers of galaxy parame-
ters (e.g. SFR) are the key in reducing systematic uncertainties, the
disparity in observing capabilities across wavelength regimes, in
terms of both sensitivity and angular resolution, severely limits the
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ability to build cross-matched samples of individual galaxies. In
this work, we have presented an alternative method designed to
maximize the information gleaned from multiwavelength data sets
by using a statistical approach to constrain a parametric description
of the LF. Taking a mass-limited sample in the COSMOS field and
stack-fitting pixel intensity distributions from the VLA-COSMOS
imaging, we achieve the following results.

(i) We constrain the parameters of the mass-limited radio LF for
star-forming galaxies out to z ∼ 4, with ∼0.2 dex error in L∗.

(ii) Our stack-fit LFs show good agreement with comparable
literature estimates. Compared to direct estimates using the same
radio data (VLA-COSMOS), we can constrain the LF 1–2 dex below
what is possible with individually detected sources at z > 0.3.

(iii) Converting our radio LFs to SFRd, we find that M∗ >

109.5 M� galaxies make up �50 per cent of the total SFRd in
the interval 0.1 < z < 4, in good agreement with other estimates
from the optical and mid-IR.

Given the wealth of existing multiwavelength data at far-
IR/submm wavelengths and the promise of large-scale radio con-
tinuum surveys in the near future leading to the Square Kilometre
Array (SKA), it is clear that statistical methods such as the one
presented here will be invaluable in determining the cosmic his-
tory of star-forming galaxies. As a final result, we show that the
precision of our method scales like

√
Ns, where Ns is the number

of sources used in the pixel stack. Thus, it is clear that even with
large area, shallow radio surveys such as those proposed for the
SKA pathfinders ASKAP and MeerKAT (EMU, Norris et al. 2011;
MIGHTEE, Jarvis et al. 2012) it will be possible to obtain inter-
esting results about the very high-redshift Universe well below the
nominal detection limits for individual sources.
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