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Abstract. If we assume that the periodic brightness variations in a Kuiper Belt
lightcurve are determined only by their aspherical shapes and the observing geome-
try, the fraction of detectable Kuiper Belt lightcurves and the lightcurve amplitude
distribution can be used to constrain the shapes of Kuiper Belt objects. The results
indicate that most Kuiper Belt objects (~ 85%) have shapes that are close to spher-
ical (a/b < 1.5), but there is a small but significant fraction (~ 12%) possessing
highly aspherical shapes (a/b > 1.7). The distribution cannot be well fitted by a
gaussian and is better approximated by a power law.
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1. Introduction

Since their discovery in 1992, the Kuiper Belt objects (KBOs) have
attracted a great deal of interest in planetary astronomy because of
the information they might contain. Thought to be a relic from the
original protoplanetary disk, they are expected to still bear signatures
of their origin and evolution. In particular, they are believed to be
much less evolved than other known solar system objects, and thus
might show planetary formation at an early stage.

Although it has been a decade since their discovery, not much is
known about the KBOs physical properties, mainly because most are
too faint (red magnitude mpr > 20) for detailed studies. Most of the
existing data are broadband photometry, with a few low-resolution
optical and near-IR spectra. Broadband photometry indicates that the
KBOs possess diverse colors, ranging from neutral to very red (Luu
& Jewitt, 1996; Tegler & Romanishin, 2000; Jewitt & Luu, 2001).
The low-resolution KBO spectra are usually featureless, although a
few show weak 2 um water ice absorption (Brown, Cruikshank &
Pendleton, 1999; Jewitt & Luu, 2001). Some broadband photometric
data have been obtained for the purpose of studying KBO rotational
properties, and although reliable lightcurves are still relatively rare, the
sample is sufficient for detailed analysis. In this paper we collect data
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from reliable lightcurves and examine their implications for the shape
distribution of KBOs.

2. Observations

The largest and most systematic studies of KBO rotational properties
were carried out by Sheppard & Jewitt (2002, hereafter SJ02) and Shep-
pard & Jewitt (2003, hereafter SJ03), which together present optical
lightcurves of 27 KBOs. Their sample included most of the largest and
brightest KBOs, with red absolute magnitude Hg in the range 6.0 - 7.5,
corresponding to the diameter range 200 - 400 km. These large objects
are unlikely to be collisional fragments. Interestingly, only 7 of the 27
yielded periodic lightcurves, which they defined as periodic brightness
variations with amplitude Am > 0.15. Other lightcurves exist besides
those presented by SJ02 and SJ03, but they vary widely in quality and
sometimes contradict each other. For example, Romanishin & Tegler
(1999) report a flat lightcurve for 1996 TOG66, while Hainaut et al.
(2000) and SJO3 detected periodic lightcurve for the same object. Of
the lightcurves in the literature that were not measured by them, SJ02
deemed 6 to be reliable and included them in their analysis. Of these 6,
2 showed periodic lightcurves. In this work we adopt the same practice
and make use of the 27 lightcurves from Sheppard & Jewitt, plus the 6
reliable lightcurves from the literature. The KBO lightcurve statistics
are thus as follows: out of 33 reliable lightcurves, 9 showed periodic
modulations with amplitudes Am > 0.15. The fraction of KBOs with
detectable periodic lightcurves is then:

f(Am > 0.15) = 9/33 = 27%. (1)

All 33 KBOs and their lightcurve parameters are listed in Table 1.
Assuming that the lightcurves are modulated by aspherical shapes and
are therefore double-peaked, the periods range from 6 to 12 hrs.

3. Discussion

Lacerda & Luu (2003) show that the fraction of detectable KBO lightcurves
can be used to infer these objects shape distribution, if certain (rea-
sonable) assumptions are made. The assumptions are

1. Asphericity. The lightcurve modulations are assumed to arise from
an aspherical shape, taken to be a triaxial ellipsoid with axes a >
b > c. The axis ratio a/b must be large enough to give rise to
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a lightcurve amplitude Am which is greater than some minimum
amplitude Amy,;, set by the photometric error. In other words,
Am = 2.5log(a/b) > AMuin.

2. Observation geometry. The angle between the KBO spin axis and
the line of sight — the aspect angle 6 — should also be large enough
to give rise to a detectable lightcurve amplitude, i.e., larger than
AMpin.

Here we adopt SJ02’s photometric error of 0.15 mag, i.e., Amym =
0.15. If a lightcurve does not show periodic modulations, it is assumed
that this is because one of the two assumptions is not satisfied. No spin
rate bias is considered here.

With these assumptions, the probability p of detecting a lightcurve
can be written as (Lacerda and Luu, 2003)

pam > Am) = [ [ W@ or@o@dade. @

where, for the sake of being concise, we define a = a/b, ¢ = ¢/b, and
U(a, ¢) is the probability of detecting brightness variations from a given
ellipsoid of axis ratio (a,c). ¥(a,c) is given by

(a2 - K
Wia,e) = \/52(a2 - I(() + d2()K 1) 3)

where K = 10%82mmin  The right hand side of Eqn. (2) represents the
probability of observing a given KBO with axis ratios between (a,c)
and (a + da, ¢+ dc) at a large enough aspect angle, integrated over all
possible axis ratios. For moderately elongated ellipsoids (small a), the
function ¥(a,¢) is almost independent of ¢. If we further assume ¢ ~
1, g(¢) is =~ 1, and Eqn. (2) becomes

P(Am > A ~ /1 " W(a1) f(a) da. (4)

From Eqn. (1), p(Am > Amyin) = 0.27. Since the data did not sample
the entire KBO population, there are necessarily errors associated with
p. The 1-; 2- and 30 error bars on p can be calculated based on the
Clopper-Pearson confidence limits (Lacerda and Luu, 2003):

lo p=0.27532

20 p=0.27"701% (5)

30 p=0.277028
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With p known, the problem then becomes inverting Eqn. (4) to deter-
mine the shape distribution f(a). This can be done if f(a) is assumed
to be a simple analytical function.

3.1. GAUSSIAN DISTRIBUTION

1.4
1.3¢
0.55
0.
5
o 1.2 0
£
0.
0.
1.1
0.
0.
l,‘ . ; ; . ) s
0 0.1 0.2 0.3 0.4 0.5 0.6
sigma

Figure 1. The probability p as a function of the mean u and standard deviation o
of a gaussian a distribution. The thick black line represents all i — o pairs that give
rise to p = 0.27. The dark shaded areas immediately adjacent to the line represent
the p and o values within the 1o limits, the next shaded areas outward represent
the 20 limits, and the outermost shaded area the 3¢ limits. The number to the left
of each boundary line indicates the p value corresponding to that line. The circle
with the cross marks the best-fit 4 — o: p = 1.00,0 = 0.24.

First we assume f(a) to be a gaussian with a mean denoted by pu
and a standard deviation o. All possible combinations of u — o that
satisfy Eqn. (5) are plotted in Fig. 1. The thick black curve represents
all possible combinations of y — o that give rise to p = 0.27, and the
shaded regions represent the u — o pairs allowed by p’s 1-, 2-, and
30 error bars. The entire shaded regions thus represent all possible
combinations of y — o that are consistent with p = 0.2715:2%.

We can constrain u — o further by making use of the observed axis
ratios a. Using the data from Table 1, for each detected lightcurve,
the observed Am is converted to the axis ratio a by using the relation
(Lacerda and Luu, 2003)

KBOrotation2.tex; 23/06/2003; 13:26; p.4



Shapes of Kuiper Belt Objects 5

cumulative fraction

3 4 5
a/b

Figure 2. Cumulative fractions of KBOs as a function of a/b (= @). The solid
line corresponds to the best-fit gaussian (v = 1.00,0 = 0.24), the dashed line a
gaussian with p = 1.22,0 = 0.24. The data are from Table 1, with vertical error
bars calculated from Poisson statistics. The horizontal error bars are calculated from
1o deviation from the average aspect angle of 60°. Note: our x-axis is a/b, which is
the inverse of SJ02’s x-axis, b/a.

(6)

_9 2 9.2 . 2.\ /2
Am = 2.51og <a cos” 0 + a“c” sin 9> ’

a2 cos2 6 + 2 sin? 6

and by assuming an average aspect angle § = 60°. (§ = 60° is the
average angle if 6 is distributed uniformly in sin ). The observed cu-
mulative fractions of KBOs, as a function of a/b (= a), are plotted
in Fig. 2. These can then be compared with the cumulative fractions
predicted by each allowed p — o pair to yield the best-fit gaussian. A
grid search is performed through all possible p — o pairs allowed by
Eqn. (5); using x? as the comparison criterion, the best-fit gaussian is
given by

i =1.00(+0.22),0 = 0.2413-18. (7)

The error bars in Eqn. (7) are 1o error bars. There is no lower error
bar to p since p represents the mean a, defined to be > 1. The best-fit
@ — o is also marked in Fig. 1.
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The goodness of the fit is shown graphically in Fig. 2 where we plot
the observed cumulative fractions of KBOs, as a function of a, with the
cumulative fractions predicted by the best-fit gaussian (Eqn. 7). The
fit is good for a < 1.5 but poor at larger a’s. The Figure also shows
that if we increase p to p = 1.22 (1 standard deviation away from the
best-fit ), the theoretical curve comes closer to fitting the larger a’s,
but misses practically all the data points.
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Figure 3. Cumulative fractions of KBOs as a function of a/b (= a@). Same as Fig. 2,
but this time with the dotted line representing a gaussian with p = 1.00,0 = 0.11,
the dashed line a gaussian with y = 1.00,0 = 0.42.

In Fig. 3 we try fitting the data with gaussians of different widths
(0 = 0.11 and 0 = 0.42, both being 1 standard deviation away from
the best-fit o), while keeping p fixed at g = 1.00. The fit offered by
o = 0.11 is much poorer than those seen in Fig. 2; 0 = 0.42 comes
closer to fitting all the data, but still misses all the data points.

What can we infer from Figs. 2 and 37 The best-fit gaussian (solid
line in Fig. 2) is skewed toward small axis ratios and predicts that
95% of KBOs have axis ratios a/b < 1.48 (within 20 from the mean).
This agrees reasonably well with the data which indicate that ~ 85%
have axis ratios a/b < 1.48. However, the best-fit gaussian fails badly
at larger a/b’s: it predicts that only 0.3% of KBOs have axis ratios
a/b > 1.72 (larger than 3o from the mean), while the data indicate
that ~ 12% have axis ratios in this range. Increasing p to pu = 1.22
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(dashed line in Fig. 2) reduces some of this skewness but does not
significantly improve the fit at larger a/b’s.

Keeping p fixed and decreasing o to o = 0.11 (dotted line in Fig. 3)
worsens the fit, as expected. Keeping s fixed and increasing to o = 0.42
(dashed line in Fig. 3) arguably produces the best fit yet (as judged
by eye) since it tries to fit all the data points and does so equally well
for all of them (or equally badly, depending on one’s point of view). In
short, none of the gaussians presented in Figs. 2 and 3 offers a good fit
to the data. The conclusion to draw from the Figures is that the KBO
shape distribution is not well approximated by a gaussian.

This is because the KBO shape distribution has two characteristics
that cannot be met simultaneously by a standard gaussian: (1) a large
fraction (~ 85%) has shapes that are close to spherical (a/b < 1.5),
yet (2) there is a significant tail to the distribution (~ 12%) that has
highly aspherical shapes (a/b > 1.7). In other words, most KBOs are
nearly spherical, but a signicant fraction is not. We note that, using a
smaller data set, SJ02 came to the conclusion that a broad gaussian was
needed to fit their available data. This is roughly consistent with our
result here. With the benefit of a larger data sample, and the additional
constraint from the detection probability p, we are able to improve
SJ02’s conclusion: the best description of the shape distribution is
actually more like a moderately narrow peak with a long tail.

3.2. POWER LAW DISTRIBUTION

Considering how poorly a gaussian fits the shape distribution, we try
approximating f(a) with a power law, f(a) o a?. The solution is shown
graphically in Fig. 4, where the thick horizontal line represents p = 0.27,
and the solid black curve represents the detection probability p as a
function of ¢:

p(a)da = a~‘da. (8)

In Eqn. (8), p(a)da is the fraction of a KBO with axis ratios in the
range @ to a + da. The probability is normalized so that the integral of
p(a) from a = 1 to @ = 5 is equal to 1. The shaded areas represent all
possible values of p within its 1-, 2-, and 3o error bars, so the allowed
values of ¢ are those that lie within these shaded areas. We note that
the horizontal line and the curved line intersect at ¢ = 6.7.

As was done in the previous section, we use the observed lightcurve
amplitude distribution to constrain ¢ further. We compare the observed
cumulative fractions of KBOs, as a function of a, with the cumula-
tive fractions predicted by each possible ¢. A grid search is performed
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Figure 4. The detection probability p as a function of the exponent g. The thick
horizontal line represents all values of ¢ that that give rise to p = 0.27. The shaded
areas immediately adjacent to the line represent the values of p within the 1o limits,
the next shaded areas outward the 20 limits, and the outermost shaded area the 3o
limits. The solid curve represents p as a function of the exponent ¢ (Eqn. 8). The
intersections of the shaded areas and the curve satisfy both Eqns. (2) and (8). The
vertical line marks ¢ = 6.4.

through all possible values of ¢; using x? as the comparison criterion,
we obtain the best-fit ¢:

q=06.4+1.4 (1o error bars). (9)

It is reassuring that x? statistics yield ¢ = 6.4 as the best fit, as this is
very close to the ¢ = 6.7 found independently by the Lacerda & Luu
method. The fits offered by ¢ = 5.0,6.4 and 7.8 are shown in Fig. 5. It
can be seen that the power laws generally fit the data better than the
gaussians. We note, however, that the power laws still have the same
problem as the gaussians: the fit is good at either the small a/b data
points or the large a/b data points, there is no power law that fits all
the data well. The shape distribution f(a) as a gaussian and a power
law is shown in Fig. 6.

As Fig. 6 shows, the KBO shape distribution is characterized by
a steep peak at small a/b’s, accompanied by a slow decline at larger
a/b’s. The dominance of small a/b’s might be explained by (a) a pre-
ponderance of nearly spherical bodies, (b) a preponderance of very
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Figure 5. Cumulative fractions of KBOs as a function of a/b (= a@). Same as Fig. 2,
but this time with the curves representing power laws. The dotted line represents
the exponent g = 7.8, solid line ¢ = 6.4, and dashed line ¢ = 5.0.

slow rotators whose lightcurve amplitudes could not be determined
from the limited data, or some combination of these two factors. The
likelihood of these scenarios will be evaluated in a future work. If the
observational bias against slow rotators can be ruled out, the challenge
will then be how to explain the dominance of nearly spherical bodies in
the Kuiper Belt. As for the (small) fraction of KBOs with larger a/b’s,
Jewitt & Sheppard (2002) and SJ02 have tentatively identified them
as rotationally deformed ”rubble piles,” much like the "rubble piles”
that have been proposed to exist among asteroids. If this hypothesis
is correct, there should be a correlation between the KBO shapes and
spin rates (high spin rate — large Am). The data sample is as yet too
small to confirm such a trend (e.g., see Fig. 13 of SJ02).

4. Summary

We have applied the method described in Lacerda & Luu (2003) to the
available KBO lightcurve data to constrain the KBO shape distribu-
tion. The method assumes that the detectability of KBO lightcurves
depends only on the KBO shape and the observing geometry; it does

KBOrotation2.tex; 23/06/2003; 13:26; p.9



10 Luu & Lacerda

Figure 6. Distribution of axis ratio @. The dashed line is the ¢ = 6.4 power law (Eqn.
9), the solid line a gaussian with g = 1.00,0 = 0.24 (Eqn. 7). f(a) is normalized to
1 between @ = 1 and a = 5.

not take into account any spin frequency effect (e.g., the bias against
very slow spinners). The results can be summarized as follows:

1. With 9 out of 33 reliable KBO lightcurves showing periodic bright-
ness variations, the fraction of detectable KBO lightcurves is f(Am >
0.15) = 0.27. This implies that the probability of detecting a KBO

lightcurve is p = 0.27702% (30 error bars).

2. The KBO shape distribution has a steep peak at small axis ratios
and drops off quickly to form a long tail: most of the distribution
(~ 85%) has shapes that are close to spherical (a/b < 1.5), yet
(2) there is also a significant fraction (~ 12%) that has highly
aspherical shapes (a/b > 1.7).

3. Fitting the KBO a/b distribution with a gaussian yields the best-fit
mean = 1.00(+0.22) and standard deviation o = 0.247015 (1o
error bars). However, this gaussian is strongly skewed toward small
axis ratios (a/b < 1.5), and offers a bad fit for larger axis ratios.
Increasing the standard deviation reduces the skewness, but then

all data points are fitted equally poorly.
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4. The KBO a/b distribution is better fitted with power law distri-
butions of the form f(a/b) ~ (a/b)~%, with the best-fit exponent
g =6.4+1.4 (1o error bars).
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Table I. KBO rotational properties

13

KBO

P [hr]

Am

Reference

KBOs lightcurves considered to have Am < 0.15 mag

1993 SC

1994 TB

1996 GQ21

1996 TL66

1996 TP66

1997 CS29

1998 HK151

1998 VG44

(Chaos) 1998 WH24
1999 DE9
(47171) 1999 TC36
(Huya) 2000 EB173
2000 YW134

2001 CZ31

2001 FP185

2001 FZ173

2001 KD77
(28978) Ixion 2001 KX76
2001 QF298
(42301) 2001 UR163
42355) 2002 CR46
55636) 2002 TX300
55637) 2002 UX25

(
(
(
(55638) 2002 VE95

)
)
)
)

16.24 £0.08

0.04
< 0.10
0.06
0.12
< 0.08
<0.15
< 0.10
< 0.10
< 0.10
< 0.10
< 0.06
< 0.10
< 0.20
< 0.10
< 0.06
< 0.10
< 0.10
< 0.10
< 0.10
< 0.10
0.08 £ 0.02
< 0.10
< 0.10

RT99, DMcG97
SJ02

SJ02

RT99, LJ98
RT99, CB99
SJ02

SJ02

SJ02

SJ02

SJ02

SJo3

SJ02

SJo3

SJ02

SJo3

SJ02

SJo3
$J03,001
SJo3

SJo3

SJo3

SJo3

SJo3

SJo3

KBOs lightcurves considered to have Am > 0.15 mag

1995 QY9

(24835) 1995 SM55
1996 TO66

1998 SM165

1998 BU48

1999 KR16
2000 GN171

(Varuna) 2000 WR106
2003 AZ84

8.08 £0.03

9.8+0.1
12.6 £0.1

11.858 £ 0.002
11.680 £ 0.002
8.329 £ 0.005

6.34
13.42 £0.05

0.60
0.19+£0.05
0.26 £0.03

0.45
0.68 £ 0.04

0.18£0.04

0.61+£0.03

0.42+£0.03
0.14 £ 0.03

$J02, RT99
SJo3

$J03, HOO
$J02, RO1
SJ02

SJ02
SJ02

SJ02
SJ03

CB99 = Collander-Brown et al. 1999, DMcG97 = Davies, McBride & Green 1997,
H00 = Hainaut et al. 2000, LJ98 = Luu & Jewitt 1998, O01 = Ortiz et al. 2001, RO1
= Romanishin et al. 2001, RT99 = Romanishin & Tegler 1999, SJ02 = Sheppard &

Jewitt 2002, SJ03 = Sheppard & Jewitt 2003.
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