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Synopsis

Students are introduced to the physics of stars and their influence on their galactic environment.
The basic observational properties of stars are reviewed including the HR diagram, followed
by a discussion of the physical structure of stars on the Main Sequence to their final states as
exotic objects: white dwarfs, neutron stars, and black holes. The interactions of stars with their
surroundings are described. Topics covered are HII regions around young stars, stellar winds,
and supernova remnants.

Recommended books

D.A. Ostlie & B.W. Carroll, Modern Stellar Astrophysics, Addison-Wesley Publishing
Company, Inc. ISBN 0 201 59880 9.

J.E. Dyson & D.A. Williams, The Physics of the Interstellar Medium, 2nd ed., Institute of
Physics. ISBN 0 7503 0460 X.

Additional texts for consultation:

A.C. Phillips, The Physics of Stars

D.E. Osterbrock, Astrophysics of Gaseous Nebulae

L. Spitzer Jr, Searching Between the Stars

H. Schefller & H. Elsasser, Physics of the Galazy and Interstellar Matter
R.J. Tayler, The Stars: Their Structure and FEvolution



Syllabus

1 Stellar classification & the HR diagram

2 The equations of stellar structure

3 The properties of Main Sequence and degenerate stars

4 An overview of the physical state of the Interstellar Medium (ISM)
5 The physics of HII regions

6 Fluids and shocks

7 The growth of stellar wind bubbles in the ISM

8 Supernova remnants

Tutorials

Tutorials will be held Mondays at 2.00 pm in JCMB (Rooms 5215 and 5326)
Schedule:

Tutorial 1: 22 October

Tutorial 2: 5 November

Tutorial 3: 19 November

Tutorial 4: 3 December



1 Preamble: fluxes, magnitudes and colours

The quantitative study of the radiation from stars is based on their flux density f,, which is
the energy received per unit time, per unit area of detector, per unit frequency range (so the
unit of f, is Wm™2 Hz™1). It is of course possible to use wavelength instead of frequency as a
measure of bandwidth, and there may well be practical reasons for doing so in terms of optical
spectrographs, which produce a nearly linear wavelength scale. We then use fy, where

= % f = )\%fl, units : Wm™>. (1)

Real instruments commonly deal with bandwidths that are large by comparison with
features in the spectrum of the source under study. The total energy measured is then the integral
under the source flux times some frequency-dependent effective filter response. This last quantity
includes all the factors that modify the energy arriving at the top of the Earth’s atmosphere.
The main factor is the instrumental filter, but atmospheric absorption and frequency-dependent
sensitivity of the detector also matter.

A notion of relative brightness can still be maintained by using the instrumental output,
O, which is what leads to the notion of magnitude. The definition of magnitude is one of
astronomy’s unfortunate pieces of historical baggage, since it originates as a quantification of
the ancient system where the brightest stars to the eye were ‘first magnitude’, and fainter stars
were of larger magnitude. The eye is a logarithmic detector and the empirical constant of
proportionality is 2.5, leading to

m = —2.5 log,, (O(gjea) . (2)
0

A magnitude system is then defined by the total effective filter and by the zero point (the
object of zero magnitude that produces output Og). This is often (but not always) taken to be
the A0 star Vega.

Once we have the apparent magnitude, this can be converted to the magnitude form of
intrinsic luminosity, or absolute magnitude This is the apparent magnitude that would be
observed if the source lay at a distance of 10 pc:

D

(1 pe = 3.0856 x 10 m).

Table 1 Parameters for common filter systems

Filter Aeff/nm  AX/nm

U 360 65
B 440 100
V 540 80
R 680 95
1 900 230
J 1220 150
H 1630 170
K 2190 190
L 3450 280
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Figure 1. [lustrating how the spectra of main-sequence stars change

systematically from types O5v through M5v (‘early’ to ‘late’) spectral types. Taken
from http://www-astronomy.mps.ohio-state.edu/ "pogge/Ast162

2 Stellar Classification

Stars may be classified on the basis of their spectra and colours. The spectra of stars are close
to a black body in shape:

5, = 2 (eh”/kT - 1)_1 . (4)

c?

Here, h is one of two incarnations of Planck’s constant: ~ = 27h, where i = 1.055 x 10734 Js.
This ‘Planck function’ is the thermal specific intensity (flux per unit solid angle), and it peaks at
wavelength Apeax /um ~ 2900 K/T. The spectra of stars, however, show in addition large numbers
of absorption lines. These arise largely in the thin surface layers comprising the atmospheres
of the stars. These atomic absorption lines come in families, of which the most familiar is the
spectrum of Hydrogen:

hv = E,, — E, = 13.6(1/m* — 1/n%) eV (5)

Wavelength (nm)



(where photon energy hv is approximately 1.25 electron volts (eV) at A = 1pm. The most
prominent lines in the optical are the Balmer series, which have n = 2 as their lowest level.

Given their non-thermal spectrum, what exactly do we mean by the temperature of a star?
The effective temperature, T.g, is defined such that a perfect black body of this temperature
would radiate the same total luminosity as the real star:

L=47R*c T, where o =567x10"° Wm 2K™*; (6)

e

R is the radius of the star, and ¢ is the Stefan-Boltzmann constant.

Some of the stronger lines in the hotter stars, with black-body temperatures 8000 < Tog <
40000 K, are due to incompletely ionized hydrogen, but absorption lines due to a wide range of
chemical elements are found: Si, N, Ca, Fe, etc. The coolest stars, with T.g < 4000 K, even
show absorption bands from molecules like TiO, CN, CH, and others.

Stars also show a range of colours across the visual spectrum, from blue to red. It was
discovered already in the 1800s that the colours of stars were, in the main, determined by the
star’s surface temperature. This is to be expected for a black body spectrum, since f, peaks
at a frequency v that increases with T. Also, Pickering and Cannon in the 1880s developed a
set of spectral classes (or ‘Harvard types’) based on the strongest absorption lines apparent in
a star’s spectrum. This is the classification scheme commonly used today. Unfortunately, their
logical classification (ABCDE. .., with 10 sub-classes 0...9) was based on the relative strength
of hydrogen absorption lines, which do not vary monotonically with temperature — see below. It
was Annie Jump Cannon who argued in the early 20th Century for a physical classification in
order of temperature, but unfortunately the old letters were retained.

Table 2 Principal characteristics of spectral types

Spectral type Spectral features

0 He II lines visible; H lines weak; High-ionization
species (C 111 etc.); UV continuum

B He I lines strong; He II lines absent; Lower-
ionization species (C II etc.)

A H lines strongest; Mg Il & Si IT strong

F H lines weaker; Ca Il stronger; lines from neutral
and once-ionized metals

G Solar-type; Ca Il strong; neutral metals promi-
nent; G band (CH) strong

K Neutral metal lines dominate; molecular bands
(CH, CN) developing

M Strong molecular bands, particularly TiO; very

red continuum

Of all these stars, the most familiar is the Sun, of type G2. For many years, it was the
only star whose physical properties could be determined directly; these are listed in the following
table.



Table 3 Properties of the Sun

Mass Radius Mean density Luminosity Tesr
1.99 x 10%° kg 6.96 x 10% m 1410 kgm =3 3.83 x 102 W 5770 K

2.1 The Main Sequence

One of the most important relationships in all of stellar astronomy is that between the absolute
magnitude of a star and its spectral type. It was noticed in 1905 by Hertzsprung and
independently in 1913 by Russell that stars fall mainly on a narrow locus in the M —Sp plane (M
= absolute magnitude; Sp = spectral type). This locus is called the Main Sequence. It was
noticed by Hertzsprung that stars of the same spectral type, as determined by their absorption
lines, were sometimes very dim stars (dwarfs), and sometimes very bright (giants) — i.e. some
stars deviate from the Main Sequence. The plot of absolute stellar magnitudes against stellar
type is credited to both and is known as the Hertzsprung-Russell diagram (or often just
as the ‘HR diagram’).

2.2 MK Classification

Subsequently, in the 1940s and 1950s, Morgan and Keenan generalised the classification of stars
by their absolute magnitudes into luminosity classes:

[a-O  Supergiants

I Supergiants

11 Bright Giants

I11 Giants

v Subgiants

A% Main Sequence (dwarfs)
VI Subdwarfs

In practice, this classification uses the shape of spectral lines to measure surface gravities
of stars. The gravitational acceleration on the surface of a giant star is much lower than for
a dwarf; the lower gravity means that gas pressures and densities are lower, so that spectral
lines are narrower in these stars. Classifying a star according to both its luminosity class and
its spectral type forms the basis of the MK Classification scheme of stars, central to stellar
astronomy.

2.3 Colour-magnitude diagrams

Instead of plotting M against Sp, it is often convenient to plot M against colour, since both of
these may be measured directly from stellar photometry with no need for doing spectroscopy.
Stellar colours most commonly involve the UBV system developed by Johnson and Morgan in
1951. A colour such as B — V is simply the difference of the magnitudes measured in these two
wavebands, and has the following physical significance:

larger colour = redder spectrum = lower temperature (7)
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Figure 2. The colour-magnitude diagram (the observational version of the

Hertzsprung—Russell diagram) for the Solar neighbourhood, showing 16631 stars
from the Hipparcos catalogue with parallax distances known to better than 10%.
The loci of the different luminosity classes are shown, as well as the locations of
the different main-sequence spectral types.

Since colour is related to temperature, which is related to spectral type, the colour-magnitude
diagram shows the same type of stellar loci as in the HR diagram.

The colour-magnitude diagram shown in Figure 2 fails to do justice to the precise physical
correlations seen in systems of stars. The main sequence is blurred because the parallax distances
are not perfectly accurate, and because the location of the main sequence depends on metallicity
(more absorption lines in high-metal stars). Moreover, the Solar neighbourhood contains a
mixture of stars of different ages, and age is a critical feature of the CMD. This is illustrated
in Figure 3, which shows the CMD for a globular cluster. Here, all the stars are at the same
distance, age and metallicity, so we can see how well defined the stellar loci are, illustrating not
only the main sequence, but the giant branches. To anticipate our future conclusions, the form
of this diagram is due to stars at the top left of the main sequence having used up a large amount
of the ‘fuel’ in their cores, which causes them to move off the main sequence. They become giant
stars with lower surface temperatures, but hugely greater sizes and hence greater luminosities.
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Figure 3. A colour-magnitude plot for stars in the globular cluster M5. This
illustrates well the main features of stellar evolution: the main sequence (MS) and
its turn-off point (TO), followed by the red giant branch (RGB), horizontal branch
(HB) and asymptotic giant branch (AGB). The data are well-fitted by a theoretical
isochrone of age 12 Gyr.

One very important systematic error in the CMD technique, however, is reddening due
to dust. The cross-section for scattering photons decreases with increasing wavelength roughly
linearly:

o(A) o< AL (8)

This means more blue light will be scattered by interstellar dust (dust distributed along with gas
between a star and us). The result will be a systematic reddening of the starlight the greater the
amount of dust, and a systematic mis-classification to ‘later’ stellar types. This may be corrected
using a two-colour diagram.

3 Formation of spectral lines

The task of stellar astrophysics is to explain some of these systematics. Our conclusion will be
that the sequence of different stellar types is driven mainly by a single parameter: the mass
of the star. The observational properties of stars largely depend on their temperature. Later,
we will show how this is related to temperature is related to mass. First, we will see why the
spectral types change with temperature as they do.

The main thing to appreciate is that stars are hot enough that the material in their outer
regions is partly ionized. How does the ionization depend on temperature? Consider a single
hydrogen atom, for which we want to know the relative probabilities that the electron is bound
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Figure 4. The two-colour plot for U — B vs B — V, showing the expected
locus of the main sequence, plus perfect black bodies (with temperatures in units

of 1000 K)

or free. In equilibrium, the probability of a given state being occupied is proportional to the
Boltzmann factor,

P < exp(—E/ET). (9)

Whether an electron is free or bound depends on the ratio of the partition functions (a fancy
name for the sum of all the relevant Boltzmann factors):

—FE; /KT
Prree o Efreegie / Ztree

= = 10
Pbound Ebound gie_Ei/kT Zbound ( )

(where ¢ is a degeneracy factor). In the case of this single object (the electron) the degeneracy
factor ¢ = 2, from spin, times the degeneracy factor for atomic orbitals. Now, a good
approximation is that Zhounda = gexp(x/kT) where x is the ionization potential of hydrogen.
This will be valid at low temperatures k7 < y, where the contribution of excited states to Z is
negligible.

In order to deal with the free-electron states, we need to know how many such states fit
into a box of volume V. The requisite density of states will be derived next term. Briefly, the
box (of side L) should be imagined as filling all space, via periodic replication. This means that
the wavevectors of the free-electron quantum states can only take certain values. If the electron
wave function is ¢ o< exp(ik - x), where k = (ky, ky, k), then periodicity requires

2
ky =n, % where n, =1,2,... (11)



Using de Broglie’s relation, the momentum of the electron relates to its wave vector via
p = hk. The allowed states in momentum space therefore lie on a lattice with spacing
L/(27h), and we can evaluate the free-electron partition function in a box of volume V' by
integrating over momentum:

Vv

Zree =975 13
free = 9 9nh)3

—p2/am gV
/6 p /2 kT dgp: (27rka)3/2W (12)

What value of V' do we use? The volume ‘available’ to each electron is effectively 1/n. — the
reciprocal of the electron number density. Using this, and defining the fractional ionization z
(ne = zn, where n is the total nucleon number density, n,+n,), we get the Saha equation

2 @EmTY

l—2  n(27h)3 (13)

It is now clear why e.g. the Balmer lines show a non-monotonic dependence on
temperature. These lines require the existence of neutral H atoms that are excited into the n = 2
state. These do not exist at very high temperatures, where the material is almost completely
ionized. Conversely, at very low temperatures, the neutral H atoms exist almost entirely in the
n = 1 ground state. The ratio of the abundance of atoms in these two states is

Nz/Nl = (gg/gl)exp(—Elg/kT) (14)
and the overall density of n = 2 atoms is approximately

N,

X —, 15
Ny 4+ N, (15)

ny = (1—2)n

This has a peak at some intermediate temperature.

We can put some typical numbers into this for the surface of the Sun. There, the nucleon
density is about n = 10" m™3 (or a mass density of only about 1078 kg m~3 — very much lower
than the mean density). The important energies are x = 13.6 eV and F15 = 10.2 eV, and ¢3/g1
is 4. Therefore, for temperature T5 in units of 10° K,

"2

1-=z
Ng/Nl = 4eXp(—118/T5)

= (3875075)%/% exp(—1.58/T5)

(16)

The overall intensity of the Balmer lines peaks where this product is a maximum, which is at
T ~ 13,500 K. This is the surface temperature of an A star, which explains why the Balmer
lines peak in this species.

In 1925, Celia Payne was the first to apply this sort of analysis to the atmospheres of
stars, which allowed her to deduce the abundances of the different elements from their spectral
lines. Remarkably, it was only as recently as this that it was first appreciated that Hydrogen
was the dominant element in the universe.

10



4 Equations of Stellar Structure

A star is characterised by its mass M, radius R, luminosity L, and temperature T'. We’ll also
see that its composition or metallicity 7 also matters (‘metals’ are anything other than H &
He: the Sun has about 2% of its mass in metals and 28% in He). Some of these quantities are
related. For instance, since a star shines like a black body:

L=4rR* 6 T3 faces Where ¢ =5.67x107% Wm2K™*; (17)

o being the Stefan-Boltzmann constant. The mass and radius are related through the
average density p:

M =47 R’p/3. (18)

More generally, if p(r) denotes the local density of the star at a radius r from its centre, then
the mass AM of the star in a shell of thickness Ar is M = 4nr?p(r)Ar, or

dM(r)
dr

=dnrip(r) (19)

This is the first equation of stellar structure (mass conservation, or the equation of
continuity). M (r) means the mass interior to radius r.

Now, the local density p(r) and temperature T'(r) are also related. For a star on the main
sequence, its hot interior behaves like an ideal gas:

P(r)=n(r)kT(r) = P(r)=[p(r)/m]kT(r), (20)

where k is Boltzmann’s Constant (= 1.38 x 1072 JK~!), n(r) is the number density of all
particles (electrons plus nuclei, since the material in the Sun is ionized). The mass m is the
mean mass per particle: n(r) = p(r)/m. We shall generally assume m = m,/2: most of the
Sun is Hydrogen plasma, and each electron-proton pair weighs basically just the proton mass —
or m,/2 on average.

The internal pressure of the star varies with radius, and this pressure gradient supports
the star against its own gravity. Consider a parcel of gas of mass m inside the star, with area A
and radial extent AR: The pressure force acting on the bottom is Fyottom = P(r)A; on the top,
it is

dpP
Fiop :P(r—l—Ar)A:P(r)A—I—d—ArA. (21)
r
The net pressure force acting is thus
dpP dpP
Fbottom — Eop = P(T‘)A — P(T‘)A + d—AT‘A = —d—AT‘A (22)
r r

In hydrostatic equilibrium, this net pressure force must balance gravity.

The gravitational acceleration at r produced by the star is

_ GM (r)

2

g (radially inwards), (23)
r

11



and the gravitational force acting on the parcel of gas (of mass m) is I’ = mg. In order to
balance the net pressure force, we must have

dP GM (r)
and dividing by m gives the equation of hydrostatic equilibrium:
1dP  GM(r)
- = (25)
p dr r

(using p(r) = m/(Ar A), because Ar A is the volume of the gas parcel.

This equation can tell us about conditions in the invisible stellar interior. As an example,
we can estimate the pressure at the centre of the Sun, P,. As a rough approximation, we
can assume a typical pressure gradient dP/dR ~ P./R (i.e. the surface pressure is negligibly
small). Hydrostatic equilibrium relates this typical gradient to a typical density and a typical
acceleration. We take the former to be the mean density, p, and the latter to be the surface

acceleration, GM/R?. This gives
P.~GMp/R=3GM?*/4rR*. (26)

A more careful argument shows that this is an inequality. If we divide the equation of hydrostatic
equilibrium by the equation of mass conservation, we get
dP/dr — dP  GM(r) S GM (r)
dM/dr ~ dM 4wt 4w R*

(27)

Integrating dM from 0 to M then gives
P. > GM?* /87 R, (28)

which is almost the previous result. This pressure is 4.5 x 101> N m ™2, or 10%-% times atmospheric
pressure.

What is the corresponding temperature? We assume the perfect gas law,
P = pkT/m, (29)
so the central temperature is
To = mPs/kpe. (30)

If we assume that the central density is of order the mean density, this suggests a minimum
temperature of

S GmM

~

ET. ~1.2x 107 K. (31)
(taking m = m,/2, and discarding factors of order unity). In other words, the typical thermal
energy is of order the gravitational binding energy. This approximate equality between kinetic
and potential energies is very common in self-gravitating structures, and is known as the virial
theorem. This temperature has been deduced using some rather dubious assumptions, but the
final figure for the temperature is not so far wrong: the correct central temperature for the Sun

is 1.6 x 107 K.

Now, we would like to get an equation for L(r): the luminosity passing through each
layer 7 in the star. [L(R) is the luminosity emanating from the stellar surface, which is the star’s
luminosity]. To do this, we must consider the source of a star’s energy.

12



5 Energy Generation in stars

The Sun loses energy at the rate L = 3.8 x 10?5 W. How long would it take the Sun to use up
all of its thermal energy? If each particle in the Sun carries a thermal energy 3k7T/2 on average
(by equipartition of energy), then we have for the total thermal energy of these particles

Mgm  3GM?
Ushermal =~ (Mg /) x 3kT/2 ~ (Mg /) x GMem _ 9 ~6x 10 ]. (32)
R 2Rg

How long does it take the Sun to radiate away all this thermal energy?

/ - Uthermal - 6 x 1041 J
thermal = T T T 38 x 1020 W

~ 1.6 x 10"" s ~ 50 Myr. (33)

This is much less than the age of the Earth, which is 4.56 Gyr. This was a fundamental problem
recognised already by the end of the 19th century by Kelvin & Helmholtz (sometimes tihermal
is called the Kelvin-Helmholtz time). It tells us that the Sun must have some additional
energy-generating mechanism. One of the great achievements of 20th Century physics was to
work out what powers the stars. It just comes down to E = mc?.

As soon as nuclear reactions were discovered in the early 20th Century, it was clear that
there were a much greater potential source of energy than any chemical reaction, and were thus
a plausible source of energy for a star. Consider fusing 4 protons (from the ionised hydrogen in
the star) into a helium nucleus:

4p — *He + Energy Qes (34)

(Note that *He consists of 2 protons and 2 neutrons, so 2 of the protons would need to convert
into neutrons plus positrons in this process.) Now, the measured mass of *He is less than the
total mass of the individual 4 protons (this is true even though the mass of a neutron is slightly
more than the mass of a proton).

We know then that some mass Am was lost, corresponding to an energy Q.x = Amc?.
Energy must be conserved in the fusion process, so this much energy is carried away by radiation:
that’s what Qe represents. Physically, there is a small but negative binding energy holding
the 2 protons and 2 neutrons together in the *He nucleus. This binding energy represents the
amount of energy needed to cause the nucleus to undergo fission into its component parts.
Quantitatively, we find Am ~ 0.007m(*He), so that nearly 1% of the mass of the protons is
converted into energy.

This is all very well, but fusion reactions will only happen if the protons can approach
within the range of the strong nuclear interaction (about 107'® m). The protons are electrically
charged and repel each other, so it is not clear whether fusion will happen in practice.

5.1 Classical view

Start with a classical argument (which will turn out to be wrong). Two protons at large
separation have a total energy that is roughly their kinetic energy, Fio,c >~ Ex, because their
Coulomb energy decays with separation: F. = e?/4meqr. To fuse, they must be brought together
into the very small space of a nucleus: ry ~ 107° m.

13
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Figure 5. As we move to heavier nuclei, the inter-nuclear forces cause them
to be more strongly bound. The best way of quantifying the relative strengths
of these bonds is via the binding energy per nucleon (as measured by the mass
of the nucleus compared to its component parts). In this plot (showing the most
abundant isotopes of each element), two things stand out: (1) the relatively strong
binding of *He; (2) the maximum at Fe (Z = 26, A = 56), which is the most stable
element.

If they were initially given just enough kinetic energy that the Coulomb repulsion brings
them exactly to rest as they reach a separation ry, then their final total energy will just be
electrostatic potential energy. Conservation of energy then says

2
- - e
Eg' = Bl = Bt =B = Trears 2 1077, (35)
N

If the protons have a temperature T, then the mean kinetic energy of two protons will be
Fx =2 x (3kT/2), and the required temperature will be

Ee 1o
T_Sk_lo K. (36)
However, this is much hotter than the Sun’s centre. This was a major stumbling block to
advocates of nuclear fusion as the energy source in stars. Still, some weren’t dissuaded, like Sir
Arthur Eddington who said it must somehow work at the Sun’s temperature, *
[the critic] to go and find a hotter place!’. The answer was recognised by George Gamow, and
lies in the intrinsically non-classical phenomenon known as quantum tunneling.

...we tell him

14



5.2 Quantum tunneling

The Coulomb potential energy curve between two nucleons of charges Z,¢ and Zge is

_ YA

V(r) = (37)

dmegr

As we have seen, classical physics says that a particle of energy F is prevented by the Coulomb
barrier from approaching within a distance r., where

2
E=V(r) = 2% (38)

dregre

Quantum physics says a particle will nevertheless be able to tunnel through the barrier.

V(r)

Ec

Figure 6. The potential experienced by a charged particle approaching a
nucleus. The potential is attractive for r < ry, but repels at larger r. A particle
of energy F at large r has zero energy at radius r = ro. If the energy is too small,
then classical physics says the particle cannot reach the centre.

To give a proper quantum treatment, we need to give the approaching particle a
wavefunction, ¢(r), which obeys Schrodinger’s equation:

_p2
V23 4+ Vip = Eip, (39)
2m,
where the potential is
ZaZpe®
V(r) = { dneor T2 Tw (40)
—Vi r < ry

To be clear, we cannot really treat one particle as stationary and the other as moving. However,
we will see in the quantum mechanics lecture course next term that this can be dealt with by

15



treating the 2-particle system as a single particle having ‘reduced mass’ m, = m,mg/(ms+my).
Defining x?(r) = 2m,.(V — E)/h® converts Schrédinger’s equation to

V2 = (1), (41)

This equation would be easy to solve if y was a constant: if x? < 0, we just get travelling plane
waves, 1) oc exp(i|x|z). However, if x? > 0, the wavefunction varies exponentially with position.
We can therefore divide the region at r > ry into two:

Classically allowed: V < F = x is imaginary and ¢ oscillates

42
Classically forbidden: V > F =y is real and ¢ varies exponentially (42)

We will not solve the problem of matching the wavefunctions between these different regions, nor
will we take proper account of the spherical geometry. For now, it will be enough to note that
the amplitude of the wavefunction decays exponentially in the forbidden region: ¥ o« exp(—xz)
for a particle that penetrates a distance = into a forbidden zone in which y has a constant value.
When y varies, we replace xz by [ x(z) dz (again, the proper justification for this will come next
term). Finally, we have to remember the critical fact that the probability density in quantum
mechanics is proportional to |¢)?|. Therefore, the relative probability of finding the particle at
re and ry is

2
o [ xtryar 7 (43)

where

/2
A ZniZst N\
/TC r)dr =4/2m,/h / ( dreor E dr. (44)

This integral may be done by recalling F = ZAZB62/47r60rC, so that the main bracket in the
integral is Fr./r— E. We can then substitute r = r. cos? @, so that # = 0 for r = ro and 0 ~ /2
for r = ry since ry < ro. We then get

r 27, Zne? [T/ 1
r)dr = /2 rth/ in20d0 = - (Eg/E)"* 45
[y ar =m0 [ 00 = 5 (o) (45)

(using sin? @ = (1 — cos20)/2 to reduce the trig integral to 7/4). The Gamow energy, Fg, is
defined by

e? 1
Eq = (7rozZAZB)2 2m,c? where a= Trehe ~ a7 (46)
We then get for the tunneling probability
e—fx(r) dr 2 — e—(Ec;/E)l/Q’ (47)

So particles with energies F/g and above should easily be able to tunnel through the Coulomb
barrier and fuse.
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Figure 7. The probability that a proton in the Sun of energy F will be able to
fuse is a product of the Boltzmann thermal probability distribution (dashed) times
the tunneling probability (dot-dashed). The product (solid line) peaks in the Sun
at about 6 keV, or 4 times the typical thermal energy.

But how many such particles are there? In thermal equilibrium, the particle energies are
distributed according to the Boltzmann factor

Proitz x exp(—E/kT), (48)

where T is the temperature of the gas. So the total probability for particles to fuse — the fusion
reaction rate R,z — then depends on particle energies according to

RAB X Ijtot = PBoltz X ]Dtunnel X~ exp _E/kT - (EG/E)1/2 . (49)

This rate peaks at £ = Fy = (kT)Z/?’Eé/?’/Q?/S. For the fusion of two protons, Fg = 493 keV,
whereas in the Sun’s core (T = 1.7 x 107 K) kT = 1.5 keV, so that Fy ~ 6.5 keV ~ 4.2kT. Notice
that this automatically gives a strong temperature dependence of the reaction rate: fusion in
the Sun involves protons that are on the rare exponential tail of the probability distribution, so
that a small change in temperature causes a large change in the reaction rate.

6 Nuclear Reactions

Nuclear reactions fusing 4p — *He occur by two principal mechanisms: (1) The PP chain; (2)
The CNO Cycle.

17



6.1 PP chain (for stars with M < M)

The dominant reaction branch gives deuterium initially (*H):

}04—p—>d.+e+—|—1/6
p+d— > He+~ (50)
*He 4+ *He — *He + 2p

The sum total gives
4p — *He + Qe + 2e* + 2v,, (51)

where Qe = 26.2 MeV includes the energy lost directly as photons and by the annihilation
of 2eT with ambient electrons in the plasma; it does not include the energy carried away as
neutrinos (an additional 2%). For T close to 107 K, the energy generation rate per unit
mass, ¢, is given approximately by

€pp = 1.07 x 107 %pX?T7 Wkg™!, (52)

where X is the mass fraction in H and 77 = T/107 K.

6.2 CNO Cycle (M 2 My)
This is a more complex chain of nuclear reactions involving proton capture and decay:

p+12c—>13N+")/

BN 5 BCHet +u,
p+13C—>14N+’y
p+14N—>150+"}/

B0 5 PN+4et 40,
p+ 19N = 12C 4 *He

The original >C nucleus has gone back into circulation by the end, resulting in the cycle — it
therefore acts as a catalyst for the nuclear generation of Helium. As for the pp chain, the net
result is

4p = *He + Qo (54)

where now Qg = 23.8 MeV (the neutrinos would increase this by 6%). For T close to 107 K,
the energy generation rate is approximately given by

€eno = 6.54 x 107" pX Xy o T2° Wkg ™, (55)
where X.yo is the total mass fraction in C, N and O. The stronger temperature dependence of

the CNO cycle means that it dominates over the pp chain in stars with masses slightly greater
than the Sun’s.
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6.3 Equation of energy generation

How much energy will be generated in a shell of thickness Ar? Since € gives the energy-generation
rate per unit mass (in Wkg™!), the rate of energy generation from the shell per unit volume is
ep(r), where p(r) is the density of the star in the shell at radius r. The volume of the shell is
47r?Ar, so the rate of energy generation in the shell that contributes to the total luminosity of

the star (in W) is
L = (4rr’Ar)ep. (56)

Taking the limit of infinitesimal Ar, we get the equation of energy generation:

dL 9
i =4drriep. (57)

Here, € is in general € = €, + €ono since both the pp-chain and the CNO cycle will contribute
to the total energy generation rate at some level. Most of the energy is generated in the central
core of the star where the temperature is highest.

7 Radiative diffusion

How does the energy generated in the central core of a star escape to the star’s surface? The
high density of atoms and ions in a star act as efficient scatterers of photons. A typical average
distance a photon in the core of a star can travel before scattering — the mean free path
—is 1 mm. The very short mean free path of a photon has two important consequences: (1)
The radiation field takes on a blackbody spectral shape; (2) The radiation leaks out slowly by
radiative diffusion.

Recall the diffusion equation for particles:
J=—-Ddn/dz, (58)

where .J is the flux density of particles (number of particles crossing a unit area per unit time),
n is the number density of the particles, and D is the diffusion coefficient. Statistical mechanics
gives

D =(v/3, (59)
where £ is the mean free path for particles moving at velocity v. The same relation will hold for
photons of number density n, where the subscript of ‘v’ is added to allow for the spectrum of

the radiation (photons of different frequencies v have different number densities). We then have
for the diffusion equation of photons of frequency v

J, =—=D,dn,/dr (60)
for diffusion in the radial direction outwards from the star’s centre. Here
D,=10,c/3 (61)

is the diffusion constant for the photons, all of which move at the speed of light ¢ between
scatterers, but have a mean free path £, that in general will depend on v.
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The energy flux density is then given by
fuo=(hv)J, = =D,d(hvn,)/dr = —D,dU,/dr, (62)
where each photon of frequency v has energy hv, and the energy density of such photons is
U, = hvn,. (63)

To get the total energy flux passing through a shell at distance r, we need to integrate over all
frequencies:

F:/ fde:—/ D, dU,/dr dv = —D dU/dr (64)
0 0

where U = [ U, dv is the total energy density of radiation field, and D is a frequency-averaged
diffusion coefficient.

By convention, we define an opacity « by

C

n=3 D (65)

The opacity has units of m?kg~!. It describes the average scattering cross section of a photon
on passing through 1 kg of material responsible for the scattering. So we can write
c dU
F=——— 66
3pk dr (66)
Since the radiation is black body, U = aT*, where T is the temperature of the stellar material.
So we finally obtain the equation of radiative diffusion:

Pt o dac e dl
4mr? 3pK dr

(67)

At low temperatures, the gas is only partially ionized. The opacity is then dominated
by bound-free absorption. At higher temperatures, when the ionization is nearly complete, the
opacity is dominated by free-free absorption. The resulting frequency-averaged opacity depends
on density and temperature according to (for bound-free transitions)

koo pT ™35 (68)
This is known as Kramer’s Law.

Scattering by electrons is also always present. If o denotes the Thomson cross section
for scattering of photons by free electrons, this gives an opacity of

NeOr Ot

:(1+X)2

P My

Res =

~ 0.02(1+ X) m?*kg ™", (69)
where n. is the number density of electrons, and X is the mass fraction of hydrogen in the star.

Examples:

(a) For material of solar abundances, at p = 10*kgm™> and T'= 2 x 10° K, x ~ 10 m%*kg~!.
This gives a mean free path of £ = 1/kp ~ 0.1 mm.

(b) At a higher temperature T = 107 K, the opacity decreases to £ ~ 0.1 m*kg~! and the
photon mean free path increases to £ ~ 1 mm.
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7.1 Summary of the equations of stellar structure

Define

p(r) = mass density at radius r

T(r) = temperature at radius r

P(r) = pressure at radius r

M (r) = mass within radius r

L(r) = luminosity escaping through a surface at r

F(r) = flux of radiation escaping through a surface at r: F(r) = L(r)/(4nr?)

= nuclear energy generation rate per unit mass at r

oy N
~
~—

:(r) = opacity of stellar material at r

dM (s
(1) Equation of Continuity : d:r) = 4mr?p(r)

1dP  GM(r)

(2) Equation of Hydrostatic Equilibrium : — — = —
p dr r?

(70)

dL
(3) Equation of Energy Generation : o= drrtep

L 4 dT
(4) Equation of Radiative Diffusion : F = — sl
4mr? 3pk dr

We would like to solve these subject to the perfect gas law P(r) = [p(r)/m] kT (r) and
simple power-law scalings for the nuclear energy generation rate and the opacity:

€= ¢opT?; k= rop” /T, (71)

8 Stars on the main sequence

8.1 Simple approach

Before even thinking about how to solve the equations of stellar structure, it is important to
emphasise that the key element in understanding the properties of stars is that the energy
emerges via diffusion, and that this allows the systematic properties of the main sequence to be
understood very simply.

Consider for simplicity a star of uniform density. Introducing a density profile only
changes things by some dimensionless constants. In virial equilibrium the potential and
kinetic energies are of the same order: GM?/R ~ nkTR®, so that T o< M/R. Now, if photons
suffer Thomson scattering inside the star with mean free path A (= (no.)™' o« R*®/M), the
typical time for escape is that taken to diffuse a distance R, t ~ R%/cA (because the distance
diffused in a random walk of N scatterings is )\\/N) The luminosity corresponds to radiating
away the energy content E oc R*T* over this time, so L oc RT*X\ o< R*T* /M. Using the virial
temperature above, this is just L oc M?3. Putting in the dimensional constants gives

L~

G4m5
= MP (72)

3.2
hc?op
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In deducing this expression, we have made no assumptions at all about the internal nuclear
reactions, which is quite remarkable.

Another way of writing L is to say that the surface radiates like a black body, L oc R*T%;.
If we assume that the virial scaling also applies to Teg, Teg o M/R, we additionally deduce
Tug x M'Y/2, R & M'/2. These relations in fact apply reasonably well to stars several times
more massive than the sun. They fail for the sun (i) because some energy is transported via
convection; (ii) because cooler stars have their opacity dominated by ionic processes: free—free
and bound—free scattering, where Kramer’s opacity applies.

8.2 Solving for stellar structure

Contrast the simple approach with a more mathematical approach using the equations of stellar
structure. The key idea here is one of dimensionless variables: the differential equations
cannot be solved exactly, and must be put on a computer. This means that the quantities
involved must be pure numbers, whereas M, R etc. have units. The solution is to make
dimensionless versions of these variables by dividing by the natural unit supplied by the star
itself. In some cases, this is the value at the surface, so we define

F=r/R; M(#)=M(r)/M; L(7)=L(r)/L; (73)

but the natural values of T', P and p are the central values:
T=T/T.; P=P/Py p=p/pe; (74)
Rewriting the equations of stellar structure in these units creates dimensionless

combinations of the reference values. For example, consider the equations of continuity and
hydrostatic equilibrium:

%}fr) =dnrip(r) = M) = (R;;C) 4772 p(7) (75)

and

1dP  GM(r)

2

b (Gﬂ) M(7) (76)

pdr 1 RP. 72
The terms in brackets must be some dimensionless constants, and this is very important: we
only need to solve the equations once. Suppose we integrate the differential equations starting
from the centre, at 7 = 0. Here, M = L =0and T = P = p = 1. At the edge, we want to have
reached M = L =1 and P = p = 0. This will only happen if we choose the right values for

dimensionless combinations like (R*p./M).

Solving the equations of stellar structure to deduce the correct dimensionless numbers
can be complicated, and we can’t go into much detail. A simple start is to choose trial forms
for the desired functions that satisfy the boundary conditions. For example, in the equation of
continuity we have to satisfy

dzg;’:) (R;;C) 4 p(7), (77)

which requires dM (7)/dF to vanish at both dr = 0 and dr = 1. A simple form that achieves
this is dM(7)/dr = AF?(1 —7), and M (1) = 1 gives A = 12. Solving the equation then gives
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p=(1-7)and (R*p./M) = 12/4x. Proceeding similarly with the other equations gives initial
guesses for the other dimensionless parameters. We can then try to integrate the equations
numerically. At the first pass, the exact boundary conditions will not be satisfied, but we will
have a more accurate approximation for p(7) etc. The parameter guesses can be improved, and
then the whole process iterated.

The end result of such a calculation comes quite close to more sophisticated calculations
of the interior conditions in the Sun, which are reproduced below in Table 4.

Table 4 The Solar interior

r/Re  M(r)/Mg p/p T/Tew L(r)/Le
0 0 115 2,740 0
0.02 0.001 104 2,700 0.01
0.09 0.057 68 2,360 0.36
0.22 0.399 20.4 1,520 0.97
0.32 0.656 6.9 1,110 1.00
0.52 0.908 0.75 650 1.00
0.71 0.977 0.13 390 1.00
0.91 0.999 1.38 x 102 89 1.00
0.99 1.000 1.82x 10~*  0.76 1.00
0.999 1.000 9.15x 1077 0.23 1.00
1.000 1.000 1.55 x 10=7  0.10 1.00

8.3 Mass—luminosity relation

So, having found the correct value of a number like (R*p./M), it must apply for any star, so we
deduce how the size and density of a star will change if we alter its mass: p. o< M/R®. Similarly,
from hydrostatic equilibrium, we get P. o< M p./R, so that

P. o M?*/R*, (78)
as we had before.

The perfect gas law says P. o p.T., so the four equations of stellar structure give four
constant combinations involving the five quantities M, L, R, pc, Tc:

peR®>  poR'T.  pcMTS  pIML
M’ M2 L 7 it ps

(79)

These can be manipulated to find out how any given quantity depends on mass. After a little
(certainly non-examinable) effort, the luminosity-mass relation comes out as

(B+a)(B+y—8)+(2+2)(38—7)

Lo M GFar—~+38 . (80)
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This doesn’t look very simple, but notice that for Thompson opacity (8 = v = 0), this gives
L < M?, independent of o (as we had earlier). For large o, we get approximately L o M3+28,
independent of the temperature dependence of the opacity (so L oc M® in the large-a Kramers
case).

These simple predictions for the scaling of properties of stars with their mass along the
main sequence can be contrasted with the actual properties, as summarised below in Table 5.
The overall behaviour is quite close to what we have predicted theoretically: between types
M5 and O5, the effective power-law scaling of the stellar properties is L oc M3%; R oc M7,
Tog oc MO44,

Table 5 Physical properties of main-sequence stars

Spectral type  Teg /K M/Mg  R/Rgy  p/pe  logy(L/Le)  Mv

05 38,000 60.0 12.0 0.035 5.90 —5.7
B0 30,000 17.5 7.4 0.043 4.72 —4.0
B5 16,400 5.9 3.9 0.099 2.92 —-1.2
A0 10,800 2.9 2.4 0.21 1.73 +0.6
A5 8,620 2.0 1.7 0.41 1.15 +1.9
Fo 7,240 1.6 1.5 0.47 0.81 +2.7
F5 6,540 1.3 1.3 0.59 0.51 +3.5
GO 5,920 1.05 1.1 0.79 0.18 +4.4
G5 5,610 0.92 0.92 1.18 —0.10 +5.1
KO 5,240 0.79 0.85 1.29 —0.38 +5.9
K5 4,410 0.67 0.72 1.79 —0.82 +7.4
MO 3,920 0.51 0.60 2.36 —-1.11 +8.8
M5 3,120 0.21 0.27 10.70 —-1.96 +12.3

This robust prediction of a steep power law dependence of luminosity on mass is the key
theoretical fact underlying the existence of the main sequence. It also governs evolution off the
main sequence. Stars can shine only for a time 7 in which they convert a significant quantity of
their mass into radiation. The total energy radiated is L7, and this must be of order the nuclear

efficiency (~ 1073) of Mc?:

7o M/L o< M~(2+20), (81)

In other words, although massive stars have more fuel, they use it up more quickly, and are the
first to evolve away from the main sequence. This lifetime is about 9 Gyr for the Sun, which is
therefore about half-way through its lifespan.
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8.4 Convective instability

We now need to come clean about a complication that has been neglected so far: energy is
not always transmitted in stars by diffusion of photons. This is because there is a large radial
temperature gradient in stars, and we can immediately see a potential problem: hot fluid rises.
In other words, there is a possibility of convection in which the central parts of stars ‘boil’
and send streamers of hot material outwards, thus transporting energy far more efficiently than
diffusion.

Consider a small parcel of fluid in the star, of mass AM; this starts in equilibrium, so
that the pressure forces acting on it balance gravity, according to the equation of hydrostatic
equilibrium. Now suppose that this parcel is displaced upwards (to larger r). In order to stay in
hydrostatic equilibrium at its new radius, r + dr it would need to have the same density as the
rest of the fluid at that radius: p(r + dr). If it is denser, it will sink, but if it is lighter it will
float to larger r and the motion will be unstable. Which of these happens depends on the the
magnitude of dT'/dr. Let the parcel move a distance Ar, so that the surrounding density is now

p = po + (dp/dr)Ar, (82)

where pg is the starting density of star and parcel. Note that dp/dr is negative. If the change in
density of the parcel is larger in magnitude than this, convection will happen:

|Apparcel] > |(dp/dr)Ar| = convection (83)

(we use the modulus to avoid worries about signs).

The change in density of the parcel is governed by the fact that the fluid inside suffers
adiabatic change: there is no time to exchange heat with the surroundings. Therefore, the
density and pressure are connected by the relation

1
Pxp' = Alnp:;AlnP, (84)

where 7 is the ratio of specific heats: v = 5/3 for a monatomic gas. The gas is also perfect, so
P = nkT x pT. This means that the general gradients in P, T" and p are related:

dlnp dlnP dInT

= 85
dr dr dr (85)
Therefore, since we want Aln pparcel < (d1n p/dr)Ar (both changes being negative), the criterion
for convection is
1 dlnP dInT
—AlnP — A 86
v nis ( dr dr ) " (86)
and taking the limit of infinitesimal Ar gives
dInT s (1 1 dIn P N "
- — convection.
dr ~y dr (87)

This makes sense in terms of everyday experience: it shows that the temperature inversions
(with hot air above cold) often experienced on clear winters days are stable.

The question is thus whether there could be one or more convective zones inside the
star, and this depends on the detailed solutions of the structure for diffusive energy transport.
In practice, convection is important in the cores of stars above a few Mg: this is because CNO
burning is important in these hotter stars. CNO is so temperature sensitive that one can think of
the energy generation as occurring almost in a central delta function, and the central temperature
gradient becomes very high. Most stars also become convective in their outer parts: for the Sun,
convection sets in at a radius of about 0.7Rg. This complication of convection does not greatly
alter the general picture of the scaling of stellar properties with mass, but it certainly makes
detailed study of stars a much messier problem.
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9 Stellar evolution and the giant branch

We deduced earlier that stars will have a finite lifetime, which is about 9 Gyr for the Sun, and
scales very roughly as M ~3. After this time, a significant proportion of the initial nuclear fuel
in the core will have been fused, and the star can no longer shine on the main sequence. In this
course, we will not look at the subsequent evolution in much detail, since it is the subject of a
module in Astrophysics 4. In outline, the main events are as seen in Figure 3:

(1)

The giant branch. Once hydrogen is exhausted in the core, it continues to burn in a
shell around the core. The helium-rich core contracts until it is supported by electron
degeneracy pressure, which we will study below. This phase is associated with an
expansion in size of the outer parts of the star by roughly a factor 10 to form a red
giant. In the initial phases of the process, the turnoff stars are subgiants and become
somewhat cooler at constant luminosity, before increasing size and luminosity greatly
at roughly constant temperature as they ascend the giant branch proper. It would be
nice if there existed a simple reason why giant stars increase in size so much, but one of
the embarrassments of the subject is the lack of any such explanation. A common and
deceptively simple argument is that it is all to do with the virial theorem, where the kinetic
and potential energies must satisfy 2K + V = 0 in equilibrium: since the contraction of
the core causes V to become more negative, the balance can be restored if the outer
parts expand to become less tightly bound. This argument works because the expansion
is approximately isothermal, but it misses out the fact that the expansion is associated
with a vast increase in nuclear energy output. Table 6 below gives characteristic sizes and
luminosities for red giants. Note that these depend largely on the spectral type, and not
on the mass: stars of a wide range of masses follow similar tracks up the HR diagram,
becoming redder and more luminous as they grow. This whole process is rather fast: the
subgiant phase lasts roughly 10% of the main-sequence lifetime, and the red-giant phase
is roughly 5% of the main-sequence lifetime.

The horizontal branch. As red giants burn more hydrogen, the mass and temperature of
the helium core increases, until it too can fuse. Stars then follow their usual pattern of
defying intuition by reducing luminosity somewhat but becoming smaller and hotter.
They end up more or less at the top end of the original main sequence, which is
reassuring, since we argued that this was largely independent of the details of nuclear
energy generation for stars where the energy originated in the core.

The AGB. History now repeats itself as helium in the core is exhausted. Shell burning
returns, with both a helium-burning shell and an outer hydrogen-burning shell, and the
star ascends the giant branch once more, now termed the asymptotic giant branch,
although its location in the HR diagram is rather similar to the red giant branch.

Late stages of evolution. Stars that come to the end of the AGB stage contain high-density
cores enhanced in heavy elements. The normal behaviour is for the remaining outer layers
to be lost, in a greatly exaggerated analogue of the Solar wind, leaving behind a white
dwarf, which simply cools via radiation without generating further nuclear energy. These
stars lie below the main sequence, being of very low luminosity for their temperature.

Table 6 Radii and luminosities of red giants

G0 G5 KO Kb MO M5
logyo (B/Rg) 0.8 1.0 12 14 1.6 1.9
logy (L/Lg) 15 1.7 1.9 23 26 3.0
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10 Degeneracy pressure in stars

10.1 Equation of state

The uncertainty principle imposes a limit on the range of position that a particle with a given
range of momentum may occupy. In 1D,

(Az)(Apy) 2 h. (88)

Since at most two electrons, for the two spin states, can occupy a given quantum state in space,
there is a limit to how tightly packed electrons of a given range of momenta may be made. This
results in electron degeneracy pressure. We may estimate the magnitude of the pressure
for a given electron density p. as follows.

Microscopically, pressure arises from flux of momentum. If the number density of electrons
is m., then the flux of electrons in the = direction is just the number of electrons crossing unit
area per unit time, or n.v,. The pressure is then approximately

Pe >~ pene vy, (89)
where p, is the momentum of the particles.
(1) non-relativistic case: if the particles are non-relativistic, then v, = p,/m,, so

P, ~ngp/me = pepim.? (pe = mene) (90)

By the uncertainty principle, the minimum volume these particles may be squeezed into is
(Az)® = (h/ps)?, (91)

corresponding to a mass density p. ~ m./(Az)* = m.(p,/h)?, so that p, ~ h(pe/me)l/?’, and
we obtain

P, =~ pep?/m? ~ 82 p2/Pm 78/, (92)

(2) relativistic case: if the particles are highly relativistic, then their flux will simply be
n.c. In this case

Pe = PrNeC = prcpe/me (93)
As before, the uncertainty principle gives p, ~ h(pe/'me)1/3, so we have now

P, ~ heptBm 7413, (94)

These expressions relating p. and e may be made exact by starting with Schrédinger’s
equation. We previously considered the idea of counting the number of states that can exist in a
box of volume V = L?, and we showed that this corresponded to a density of states in k space:

Vv

dN = ¢ (2ﬂ)3

Pr (&= dhadbydh), )
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where ¢ is a degeneracy factor for spin efc. This expression is nice because it is extensive

(number of states o V') and hence the number density of particles in the box is independent of
V:

1 = 3
n:gW/o f(p) &°p, (96)

where we have converted from k space to momentum space using p = hk as before; f(p) is the
occupation number of the mode —i.e. the number of particles in the box with that particular
wavefunction. For bosons (particles such as photons), the occupation number is unrestricted.
Next term, it will be shown that the above formalism applies for black-body radiation treated
as a gas of photons, for which the occupation number is

Jom = (eXP[Ew/kT] - 1)_1 : (97)

For fermions (particles such as electrons, whose spin angular momentum is h/2), things are
completely different, and the Pauli exclusion principle says that

flp) < 1. (98)

This criterion immediately imposes a restriction on how dense an electron gas can be
before it has to be treated in a manner very different from the classical one. Normally, the
distribution of momenta would be treated as a Maxwellian distribution, in which each
component of velocity has a Gaussian distribution with standard deviation o:

1
dProb = ———— exp(—v®/20?%) d* 0
ro @n)7 7203 exp(—v/20%) d’v, (99)
where v is the particle velocity. The dispersion in velocities, o, is related to the temperature by
equipartition of energy: ma?/2 = kT /2. We can convert this to a number of particles in a given
range of momentum space, by multiplying by the total number density, n, and using p = mu:

dn = exp(—p?/2mkT) d°p. (100)

n
(2rmkT)3/2

Comparing with the general expression for density, we deduce that there is a critical density,
at which the classical law would yield f > 1:

g(mkT)3/?
Nerit = “2n)n (101)

A simpler way of expressing this is h/(ka)1/2 ~ nc_rlifg: the momentum dispersion is p* ~ mkT,

so this just says that the typical interparticle spacing cannot be smaller than the limit set by the
uncertainty principle. If we take a fixed density, the gas will be in the classical regime for high
T, but quantum effects become important as we go towards zero T'. This is illustrated in Figure
8. In the limit of zero temperature, states are occupied only up to the Fermi momentum, px:

1 " 1 4r
n = _— = S .
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Figure 8  The occupation number for a gas of fermions as a function of their

density relative to the critical density, ranging from n/ng;i; = 0.03 to n/neie = 30.
For the lowest densities (or highest temperatures), we have almost exactly the
classical Maxwellian velocity distribution. For densities well above critical, the
occupation number tends to a ‘top-hat’ distribution: unity for momenta less than
the Fermi momentum, and zero otherwise.

The thermodynamic properties of the electron gas can be worked out by using simple
properties of each state, plus symmetry. Each mode has a definite value of momentum, and has
some energy that depends on the momentum, ¢(p). It therefore has an effective mass of ¢/c?,
and an effective velocity given by momentum divided by mass, or v = pc?/e. The flux density
of momentum in a given direction (z, say) is just p, n. v, and so we can deduce the pressure in
the z direction, which must be equal to the pressure in any direction:

1 * p2c? 5
Pzg(%h)3 3 f(p) 4= p* dp. (103)
Here, we have used
2 1 2 2 2 1 2 2
Pz dps dpzdp. = 3 [ Py + py + p2) dps dp-dp. = 5 [ p” 4mp” dp. (104)

This can be regarded as obvious by isotropy, or one could use spherical polars in momentum
space to get the same answer. Consider now the extreme non-relativistic and relativistic limits of
the exact expressions for the pressure, in the zero-temperature case. Hereafter, we will explicitly
adopt g = 2 for the two electron spin states.

1) non-relativistic case: ¢ = m.c’, or v = p/m,, so
1 . . . 2
8 1 [PF 9 1 5
P, = k) 5/0 (p°/me) p* dp = Trtiem e (105)
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. 3\ — .
Since n, = (372h°)~1p3 from above, we have, using p. = m.n.,

325 .\ /°
P = (%) (106)
and so
_ 322p3 5/3 5/3 =7/3 = ¢, ,5/3 107
e — 15”1’27L3 ( T ) Pe’ M, = 1Pe ( )
where
) 25 /3 2/3

(2) relativistic case: €= pe, or v = ¢, s0

8t 1 c
P, = §/ peptdp = s
h3p (109)
1271_2h3 ( ) = I(Qp‘é/?)
where
- 1/3
Ky =" (3) . (110)
4'me/ T

Note that for both cases, the electron degeneracy pressure P. depends only on the electron
density p.. For partially degenerate gas, however, P, will depend on both p, and T. Note also
that the degeneracy pressure depends on a negative power of m.: the degeneracy pressure from
the protons that are also present is therefore negligible, and this justifies us having considered
only the electron component.

10.2 The lower limit to the main sequence

As a first application of degeneracy pressure, we can calculate how massive a star needs to be
before it can shine. Stars start life as collapsing gas clouds, and will radiate energy (‘cool’) on the
Kelvin timescale, which comes from assuming that the body must radiate away its binding

energy:
o [ GM? R GM?
L~Z te [= — ) ~ . 111
at( R) - ( |R|) REL ()

As we saw earlier, this gives about 3 x 107 years for the Sun, showing the need for a non-
gravitational source of energy. The collapse will cause the star to heat up, as may be seen from
the virial theorem: (potential energy) + 2x (kinetic energy) = 0. In terms of the number of
particles V and the mean temperature T this gives

2 2
ox Snpp = 2CM g oGM M (112)
2 R 3SNER R
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(where « is a constant of order unity; = 3/5 for a uniform-density sphere). So, normally
collapse will cause the temperature to rise until nuclear burning can begin. The only way this
can be prevented from happening is if electron degeneracy sets in first and halts the collapse.
As we have seen, the condition for the onset of degeneracy is just that the electron interparticle
spacing becomes small enough for the uncertainty principle to matter:

ne_l/?’p <h = degeneracy, (113)
where n. is electron number density and p momentum. We can roughly estimate the condition
for this to occur by assuming the body to be of uniform density and temperature. Equipartition

says that p?/2m, = kT/2, so p> = m.kT. We will combine this with the virial relation

_GM?  GMm,
~ 5NR 5R

kT (114)

where we have assumed that the star is mainly hydrogen, so that N = M/m,. The condition
that the star is non-degenerate is then

(ﬂ A7 R3

1/3
o 3) (m kT)Y? > h. (115)

This equation mixes T, M and R, but we can eliminate R by using the equation for T again.
This gives

m, 4r\'/? GMm
m kT 1/2 ((Mp 2T = P>y 11
(m)<M3 ST~ (116)
or
2, 8/3,
ET < ar MMU?)_ (117)
3 25

For a given mass, we can therefore express in practical units an estimate of the maximum
temperature that can be attained before degeneracy becomes important:

M 4/3
Trnax ~ 108 (—) K. 118
i (118)

Since fusion reaction rates drop exponentially for 7" < 10% K, a minimum mass for normal stars
on the range 0.1-0.01 Mg might be expected. The accepted figure for this limit when realistic
calculations are performed is in fact 0.08 £ 0.01Mg. Objects much less massive than this will
generate energy only gravitationally, and will therefore cool to a state of virtual invisibility on
the Kelvin timescale. Such objects constitute one of the holy grails of stellar astrophysics, and
are known as brown dwarfs. The search for these objects has been somewhat controversial,
since it is very hard to measure the masses of faint cool stars directly. However, there are now
a number of good candidates for objects that sit on this interesting transition between star and
planet.
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11 White dwarfs and the Chandrasekhar limit

Degeneracy pressure is also important in more massive stars as they evolve off the main sequence.
We have appealed to the effect to hold up the cores once hydrogen burning ceases, and the same
effect supports the white dwarfs that are formed at the very end of the evolutionary sequence.
The maximum mass for a white dwarf (the Chandrasekhar mass) is about 1.4 Mg, and this
arises roughly as follows.

Consider the energy density for zero temperature in the limit that the electrons are all
highly relativistic (i.e. the Fermi momentum is pr > mc.c, which will be true at high enough
density, since the typical spacing for degenerate electrons is ~ h/pz). The energy density can
be calculated in exactly the same way as we obtained the number density and pressure: by
integrating over momentum space, putting in the energy per mode, ¢(p):

/OOO c(p) f(p) 4r p* dp. (119)

In the zero-temperature limit, we set f(p) = 1 up to the Fermi momentum. In the relativistic
limit, EF' = pc, so the energy density is

1
U, = 4rept /4, 120
o G At/ (120)
which can be expressed in terms of the number density as
U. = 2(37)"/% hend/®. (121)
In the opposite limit of highly non-relativistic electrons, the energy density is similarly
3h*
U, = 3n%)2/3 033, 122
10me ( T ) n6 ( )

Suppose the star is in the relativistic regime, so that the total kinetic energy of the electrons is
Fr x UV x ni/SV x M4/3/r. The gravitational energy is proportional to —M?/r, so that the
total energy can be written as

Eiot = (AM*/® — BM?)/r. (123)

There thus exists a critical mass where the two terms in the bracket are equal. If the mass is
smaller, then the total energy is positive and will be reduced by making the star expand until
the electrons reach the mildly relativistic regime and the star can exist as a stable white dwarf.
If the mass exceeds the critical value, the binding energy increases without limit as the star
shrinks: gravitational collapse has become unstoppable.

To find the exact limiting mass, we need to find the coefficients A and B above, where
the argument has implicitly assumed the star to be of constant density. In this approximation,
the kinetic and potential energies are

2437 \'/* e ( M \*/? M?
Ex = Sl = ; By = 3G ; (124)
256 oo\ pmy, 5r
where the mass per electron is um,. This estimate of the critical mass is
37 (he\** _, 7T
Merie = ,u_2 (5) m, " o~ ,u_2 Mg. (125)

For a star near the end of the evolutionary track, much of the initial fuel has been burned to
iron, so that g ~ 2. In fact, more exact calculations show that the critical mass in this case is
about 1.4 Mg.
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11.1 Sizes and densities of white dwarfs

White dwarfs are extremely compact objects, and become more so as their mass increases. To

find their radius, we assume that the electrons are non-relativistic, so that their energy density is

x ni/?’ so that the total kinetic energy is Fx = CM3/3R=2. As before, we write Fy = -BM?/R,

and the total energy is the sum of these terms. The equilibrium radius is where dF/dr = 0, so
that we have

R=(20/B)M~/3, (126)

and the star contracts as its mass is increased. To put numerical values into this, the electron
number density is

ne = (M/pm,) | (4xR/3), (127)
and we have the energy density in terms of the number density

352

Ue = Tome (37%)2/ n3/?, (128)
which gives
3h° 22/3 ~5/3 5/3
€= 20 (3020 (um,) 5 (4 3)71 (129)

Combined with our previous B = 3G/5, we get

3 /372\'/° A2
rR=2(2) 0 s, 130
2( 2 ) Gme(pmy)5/3 (130)

Expressed in terms of the Chandrasekhar mass, this is

A ANY2 o\ /3 M O\"Y3
= — ~ k
R=3 7T/5/Jmp'me (cG) (Mcrit) 5975 (Mcrit> m, (131)

where the last figure assumes p = 2. In other words, a Chandrasekhar-mass white dwarf is about
the size of the Earth. This is an extremely high density, which we can evaluate as

M 125um,m?c? M\’ 9.6 M\’ _3
= = = ~ 10” k . 132
p 471'R3/3 1927T2h3 Mcrit Mcrit & ( )

These expressions contain tedious numerical coefficients, which come from working out
the constant-density model. Even if the expressions were simpler, there would be no point in
memorising the exact coefficients, because the constant-density model is not exact. If we wanted
to do better, we would need to solve for the internal structure of a white dwarf. This is not so
hard, since we know that the material of the white dwarf obeys the equation of state

P=Kp, (133)
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where v = 5/3 in the non-relativistic case. This is known as a polytropic equation of state, and
stars described by it are called polytropes. We can insert this in the equations of hydrostatic
equilibrium and mass conservation:

1dP  GM(r) dM (r)

o dr 2 e = 4rr?p(r), (134)
giving
d (r? dKp”
drrip(r) = —— [ — : 135
wrtolr) =~ (5 S0 (135)

As before, we can place this in dimensionless form by defining 7 = r/R and p = p/pc:

d (i dp"
— (=) 136
dr (ﬁ df) (136)

Kpl™?
R2

4ritp = —

This gives a dimensionless differential equation to be solved subject to boundary conditions
p(0) = 1; p(1) = 0 and dp/dF = 0 at 7 = 0 (because the pressure gradient must vanish at the
centre, by spherical symmetry). Numerical solution of this equation gives a central density that
is 6 times the mean if v = 5/3 and fixes the constant in the density—radius relation:

R pl/*7t (137)

Similarly, we can solve for relativistic polytropes with v = 4/3. The key outcome there is
that the mass is independent of the radius and density:

M x pcR?, but Rops'/?. (138)

So, non-relativistic white dwarfs are stable over a range of masses, but as their mass increases,
they shrink. By the uncertainty principle, this must force the electrons closer and closer to
becoming relativistic, and the limit of this is a star in which the electrons are all relativistic,
which has a unique mass. It appears that degeneracy pressure has no way of supporting more
massive bodies.

11.2 Cooling and ages of white dwarfs

All these calculations have assumed that the white dwarf is of zero temperature. This is not true
initially, as the white dwarf starts life as the core of an evolved star. Nevertheless, degeneracy
pressure allows the white dwarf to be supported without fusion energy generation, so it rapidly
cools, and the zero-temperature approximation becomes a good one.

As usual, the black-body approximation can be used to deduce an effective surface
temperature in terms of luminosity:

L=4nR*0c T, where o=5.67x107° Wm™?K™*; (139)

Using the mass—radius relation derived above, we can obtain the temperature corresponding to
a given luminosity:

Top = 10*3(L/Lo) Y (M/Msii)'/° K. (140)
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Because they are so small, luminous white dwarfs must be extremely hot; conversely, white
dwarfs with effective temperatures closer to that of the sun are very low-luminosity objects, and
extremely hard to detect.

Such cool white dwarfs are interesting, because they are natural clocks: the coolest ones
are the oldest. One might think of working out the age—temperature relation just by using
the above temperature to calculate the thermal energy of the star, and equating the luminosity
to rate of change of thermal energy. This goes wrong because the internal temperature tends
to be much higher than the surface. The interior is at a single temperature owing to thermal
conduction by the degenerate electrons, but the surface layer is non-degenerate and serves as an
effective insulator. The lifetimes of white dwarfs are therefore longer than the naive sum would
indicate — but still finite. There are claims of a cutoff in numbers at about L = 10™** L, which
would correspond to an age of assembly for the disk of the Milky Way of about 9 Gyr, but this
is still an area of active research.

12 Neutron stars and black holes

12.1 Neutron stars

For a white dwarf slightly more massive than the Chandrasekhar limit, it appears that
gravitational collapse must follow, with a corresponding increase in density. As the density
of free electrons and nuclei goes up, the reaction of inverse beta decay is favoured — i.e. an
electron can combine with a proton in a nucleus to yield a neutron. Once the density reaches a
critical level neutron rich nuclei (like ''®Kr) start to release free neutrons, in the phenomenon
of neutron drip. This happens at a density of p ~ pasp = 4 x 10'* kgm ™. Being fermions,
these neutrons can provide a degeneracy pressure just in the same way as the electrons. As more
and more electrons combine with protons, their number density falls, and the number density
of free neutrons rises. At a density of p = 4 x 10'® kg m 3, half the pressure is provided by the
neutrons. At p ~ 2.4 x 10'" kgm™3, the remaining nuclei touch, leaving essentially a giant ball
of neutrons, with some electrons and protons mixed in. Effectively, the star has become a single
nucleus, of colossal proportions. In short, a last-gasp strategy for evading total collapse of a
white dwarf is to combine its electrons and protons into neutrons. The same stability analysis
would then be applied with neutrons as the fermions but now with p ~ 1. This apparently gives
a limiting mass 4 times larger than for white dwarfs, but is the Newtonian analysis valid for
these neutron stars?

An interesting way of expressing the size of these stars is in terms of their gravitational
potential. Recall that stability of a degenerate star requires it to be on the relativistic borderline,
i.e. pr ~ mec for the Fermi momentum. For a degenerate configuration, the number density is
thus n, ~ (m.c/h)%, i.e. a particle spacing of about one de Broglie wavelength. The number
density is also n, ~ (M/um,)/R?, which gives R ~ (M /um,)'/3(h/m.c). At the critical mass,
M ~ (he/G)?/?(um,) =2, this gives a gravitational potential at the star’s surface of

0] GM Me

2" Re pm,
Newtonian theory is therefore adequate for white dwarfs, but fails entirely for neutron stars
where m, — m, and g — 1. The best detailed calculations give a maximum neutron star mass

of

~ GM?* 3 (um ) Pm, [he ~ (141)

Mmax ~2-3 M@ (142)
and a radius
Rmax ~ 10 — 15 km. (143)

These figures are still uncertain, owing to the exotic nature of neutron star material.
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Figure 9. The density of a neutron star is highest at the centre and decreases
outward. In the outer crust, the pressure is dominated by relativistic degenerate
electrons. The majority of the volume, however, is dominated by a relativistic gas
of degenerate neutrons.

12.2 Black holes

For a neutron star above the theoretical mass limit, there is no known equation of state of
nuclear matter that can prevent collapse. What then will be the fate of a more massive star
once it stops burning, and so loses its thermal pressure support to balance gravity? Usually the
entire disruption of the star will result in a spectacular supernova. But the best models we have
for supernovae predict that for progenitor (pre-supernova) stars that are sufficiently massive,
a core more massive than 2 Mg will remain. The only known answer is that such a star will
undergo a catastrophic collapse that, according to General Relativity, is unstoppable, resulting
in a singularity in space- time. We don’t see the singularity, however. Instead we see a black

hole.

This name reflects the fact that light cannot escape at all from a sufficiently strong
gravitational field. By something of a coincidence, a Newtonian argument gives the right answer
for this, in an argument due to Laplace. A particle emitted with velocity v at radius r has total
energy

Fiot = mv?/2 — GMm/r, (144)

which is negative if r < 2G M /v?%, so that the particle cannot escape to infinity. Letting v — ¢
implies that there is an event horizon of radius 2GM/c? from which light cannot escape. A
proper calculation in general relativity shows that this conclusion is actually correct. Moreover,
as physical systems approach this radius, gravitational time dilation slows the apparent ticking
of clocks to zero, so that emission of photons effectively ceases: the central regions of a black
hole cannot be detected directly. Instead, we rely on emission from hot material in orbit at radii
of a few times the horizon radius. Here, the orbital speeds are a good fraction of ¢, and material
being accreted can be heated to the point where it emits X-rays.
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13 An overview of the interstellar medium

The ISM is a component of great significance in astronomy:

Birthplace of stars

(1)
(2) Stellar graveyard — ‘metal’ enrichment (Nebulae)

(3) Dynamic arena of stars: HII regions, winds, supernova remnants
(4) Significant part of Galaxy: Mgas ~ 0.05Mgalaxy

Its major components are as follows:

(1)

(2)

13.1

Neutral Hydrogen (H® or HI regions); revealed by 21lcm radiation; contains 2 90%
of total mass of ISM; typical T ~ 80 K with ny ~ 3 x 105 m~3; denser clouds colder:
T ~ 30 K; concentrated along spiral arms of Galaxy

Molecular Hydrogen (H:); Hy forms in densest regions of HI clouds; 7" ~ 30 K with
n(Hgo¢) reaching 10° — 10" m ™3,

HII Regions (HT); located around hot, blue stars (O & B); n, ~ 10® — 10'® m =3 near
O stars; n, ~ 3 x 10°m ™ near B stars, planetary nebulae; T ~ 8000 K; My ~ 0.1 M cy;
concentrated along Galaxy’s spiral arms.

Dust Small particles or grains (C & Si mostly): radii < 1 pum; Mayse =~ Miay/160;
Revealed by extinction: Apparent magnitudes of stars are typically reduced by 4
magnitudes in HI clouds (since the clouds contain dust).

Abundances 70% H, 30% He by mass — similar to Sun; 1-2% in metals: C, N, O, Fe,
Si, Na, Mg, etc., but with different relative ratios compared with the Sun. This is believed
to be due to condensation of some of the metals into dust grains — some elements solidify
more easily than others.

Table 7 Properties of typical interstellar gas clouds

Cloud Bok IR/HII Dark Diffuse Cloud
Type Globule Cloud Cloud Cloud Complex
A,/mag 4 30 4 0.2 4
Ny /em™2 8 x 107! 6 x 1022 8 x 1021 4 % 102° 8 x 107!
Ny /em™3 7 x 103 4 x 10* 2 x 103 20 200
R/pc 0.3 0.4 1 5 10
T/K 10 50 10 80 10
M/Mg 30 400 300 400 3 x 104

Dust Extinction

Let fy denote the flux of radiation received from a source of luminosity L) at a distance D.

Then

Ly

= 4 D2

(145)

in free space. If there is intervening material, as there is between the stars, then the received
flux will be reduced by the factor exp(—7y), where 7 is the optical depth of the intervening
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Figure 10.  The distribution of neutral hydrogen in the Milky Way, as measured
by the 21cm emission line. The location of the Sun (8 kpc from the centre) is shown
by the arrow top centre. The concentration of neutral hydrogen towards spiral arms
is very clear.

material. The subscript A denotes that the amount of flux reduction — or ‘extinction’ — will in
general depend on the wavelength of the light.

If the intervening material consists of particles with cross-section o and n is the number
density of the particles, the optical depth over a path length £ will be

7\ = noyt. (146)

It is convenient to introduce the column density N = nf, which is just the number of atoms
per unit area in a cylinder of length ¢. Then

T)\:NO’)\ (147)

In the case of a source at distance D, the observed flux will then be suppressed exponentially:

(ext) Ly -7
A= e (148)

where 7y = Noy and N = nD. In astronomy, the amount of extinction is often expressed as
a magnitude Ay,. The apparent magnitude at wavelength A is related to the flux density by

my = —2.5log;q fx + constant. Thus, in the presence of extinction, we have
ex L
mE\ = —2.5logy, [ﬁ e“”] + constant
L
= —2.5log;, (ﬁ) — 2.51logyg (e_”) + constant (149)
= mE\no ) 4 257, log,o(€)

38



10

C T 7]

= ° =

< - . .

™~ i ]

< L ° ]

4 - -
S F T
0.1 0.2 0.5 1 2

A/ um

Figure 11. The extinction at wavelength A relative to V', for dust with the
composition characteristic of the Milky Way’s ISM.

We call the magnitude increase due to extinction Ajy:

Ay = m()\eXt) — m()\no et = 257, logq(€). (150)

Observationally, we find in the visual band V (A ~ 5480A) that

NHI
1025 m—2 ’

(151)
where Ny; = ny D is the HI column density. We believe most of this extinction arises from
dust grains mixed in with the gas.

In the B band (A =~ 4400A)7 we find a higher amount of absorption. We define the
reddening as

Ep_v =Ap — Ay. (152)

In practice, Fg_yv ~ Ay /3. This constrains models for the dust grains, which are believed to
be a mixture of carbon and silicate grains. The colour excess Eg_y may be measured from the
displacement of stars in a colour-colour plot from the Main Sequence. (Recall the two-colour
diagram in Figure 4.) Such studies allow the relative extinction at different wavelengths to be
measured, as shown in Figure 10. A common approximation is to say that this scales as

Ay o 1/, (153)
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But this ignores the UV ‘bump’ and the faster dropoff towards the infrared. These features show
where the wavelength of light becomes comparable to detailed structure in the dust grains. If
the grains were very much smaller than the wavelength, we would expect the A, o 1/A* law of
Rayleigh scattering, as seen in the Earth’s atmosphere. The larger dust grains also differ in
an important way: they genuinely absorb photons, rather than simply scattering them in a
different direction. Either effect dims an object seen through a screen of dust, but we will see
later in HII regions that the difference between absorption and scattering can be important.

14 HII Regions

14.1 Photoionization

Incoming photons with enough energy to lift an electron out of its Coulomb potential well into
the continuum are said to photoionize the electron: this is the photoelectric effect. For H,
the ionization potential is

I, =13.6 cV. (154)

Consider a star with a temperature T, > 30000 K. The average energy of a photon from the
star

(€.) 2 kTy =4 x 1071 J = 0.2, (155)

is thus too small to ionise hydrogen. But recall the spectrum of a star is a black body, which
has a long high energy tail. For an O star with I ~ 20L, typically S, ~ 10*® s7! in ionizing
photons. What will be the effect of these ionizing photons on the surrounding neutral gas (HI)?

In a time ¢, N, = S.t photons will be produced. These will be all used up in ionizing the
surrounding gas. If ny is the number density of hydrogen atoms (number of H atoms per unit
volume), then

B 47 R3
3

N

i (156)

hydrogen atoms will be ionized where

(157)

4 ny

1/3
N=N,=5¢ = R:(is*t) .

So as time passes, an ever-increasing ionized sphere will surround the star. This is called an HII
region.

In the above, we assumed ny was uniform. This was unnecessary. If the HII region has
already grown to a radius Ry, then in a short time At it will grow an additional amount AR
given by

4r REARmy(R) = S.At, (158)

and so we have

AR, . dR, Sy
At dt  ArR2ny(R,)’

(159)

for any ny(R). This tells us how fast the HII region grows.
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Examples:

(1) S. = 10*® s~! (typical O6 star) Typical surrounding density is 10'°m~ for a cloud where
young O stars form. Then after ¢+ = 10000 years, R, ~ 4 x 10 m ~ 1.4 pc.

(2) Consider a somewhat more interesting case. The clouds surrounding young stars tend to
be denser at their centres (where the stars form), and decrease in density outward. Suppose
ny = no(R/Ry)~%/?; our growth equation becomes 4r R?n,dR,/dt = S, implying

Ry(t) R -3/2
/ 47 R?ng (-) dRI:/S* dt = S.t (160)

RIIO RO

(if S« = constant). Now,

Ri(t) -3/2 Ri(t)/Ro
/ 47 R2ng (%) dR; = 47rnoRg/ 2?23 2 de T = By

_ Ro
o 0 P a Ri(t)/Ro 8§ RO 3/2 161)
1 0 T .
= drno Ry = {r?’/?}o = ?noRg (—)
0
SO
3 5. \3
== 162
R (162

We see now that instead of growing like R;(f) o t'/3 as in the uniform density case, the HII
region now grows faster, as R;(t) t2/3. This is because the gas density of the cloud decreasing
with R — the cloud is thinning out — and so the star is able to ionize a greater volume of cloud
for the same number of photons. The sensitivity to the density gradient can in part explain why
an HII region is so filamentary on its appearance. We shall see, however, that this is too simple
a view of an HII region, and only describes its very early stages.

14.2 Radiative Recombination

When we look at an HIT region, most of what we see is light emission from hydrogen. This is
dominated by the n = 3 — n = 2 Balmer Ha line at A = 6563A: How did an electron get into
the n = 3 state? Through radiative recombination, which is the capture by a positive ion
(or proton in the case of H) of a free electron, with the consequent release of radiation. If the
electron has initial energy F., the amount of energy released during the recombination to a level
of energy F, is

E, = E, + |E,|. (163)

Once captured, the electron can make its way down by spontaneous transitions to levels of lower
energy, resulting in a complex cascade of transitions. These inevitably lead to the production of
Balmer (n > 2 — n = 2) photons if the nebula is optically thick to Lya photons (as it usually
is).
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Figure 12. The recombination cascade in hydrogen. A continuum electron is

absorbed, placing the atom in the n = 4 excited state in this example. Decay direct
to the ground state produces a Lyy photon, which is immediately reabsorbed by
another atom. The path to the ground state instead produces a sequence of Balmer
and lower-energy photons, plus Lya.

Most of the hydrogen that’s neutral is in the ground n = 1 state. That means that any
Lyman photons will be immediately re-absorbed (by a nearby H atom in the n = 1 state). The
result is that Lye photons undergo resonant scattering in the nebula, only escaping by a
very slow diffusive process. In a typical HII region, the odds are high that on its effectively long
journey through the HII region, a Lya photon will eventually hit a dust grain and be absorbed
by it. As a consequence, very few Ly« photons can be seen from HII regions.

Another consequence of the recombinations is that hydrogen atoms that were once ionized
recombine, producing a new neutral atom which will then be ionized again. As a consequence,
there will always be some neutral hydrogen atoms in the HII region. But it also means the full
amount of ionizing photons won’t make it to the edge of the HII region (if some are lost on
route). This slows down the advance of the ionization front, and can even stop it altogether.
Let’s see how this can happen. Suppose we consider a particular free electron. How long will it
take to meet a proton and so recombine? Obviously the rate of collisions will be proportional
to the density of protons: doubling the number of protons in a box of fixed volume will double
the chance of the electron recombining with a proton during the same interval of time. Thus the
rate of recombinations per electron is

R = any, (164)

where we call the proportionality constant o the radiative recombination coefficient. The
time it will take the electron to recombine is then

trec = % = (165)
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Figure 13. The geometry for the growth of an HII region. If the ionized region
is of radius R, the time taken to ionize a further shell of thickness AR depends
on the rate of production of ionizing photons, minus the rate at which they are
required to balance recombinations within R.

where t.o. is called the recombination time. Typically o ~ 3 x 107'® m3s™!, although it
depends on temperature. Then for n, = 10’ m™3, t,.c =3 x 10%s = 10 yr.

Now, if there are n. electrons per unit volume in the HII region, the total recombination
rate is

4
Riot = ?” R3n, an,, (166)

where the first factor is the total number of electrons in HII region of radius E;. But this can’t
exceed the rate at which the star is producing ionizing photons S.. Thus the HII region must
stop growing when the rate of ionizing photons balances the total rate of recombinations:

S* = Rtom (167)

or

4r
S. = ?Rzanenp, (168)

where Rq is called the Stromgren radius.

For a pure hydrogen nebula, n, = n, by ionization balance, and this is ~ n,, the original
total H-atom density, since the gas is highly ionized. So

R.= (i S )1/3. (169)

2
4 an?

Example: Consider the O star again with S, = 10*? s7! in a cloud of density n, = 101 m =3,

Then R ~ 4.3 x 10® m = 0.14 pc. So indeed the Stromgren radius is not so large.
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How long does it take for the ionization radius to reach Rs?7 Consider an advancing shell
as before: the number of hydrogen atoms in a shell of thickness AR is

ny(R) x 4n R2AR,. (170)

The number of ionizing photons produced by the star in the time available to ionize the atoms
is S.At. But we know not all the photons will make it all the way to R; because some will be
absorbed on route by the newly recombined hydrogen atoms. How many?

In ionization equilibrium, every newly recombined atom is compensated by a new
photoionization. So we only need count up the total number of recombinations inside the sphere:

%Rf’ne (an,)AL. (171)

The number of photons that reach R; is thus reduced by this amount, needed to keep the parts
at R < R, ionized, and so:

4 R2ng (R)AR, = S.At — t—ﬂRf’aniAt (172)

(taking again n, = n, ~ ny), or

dR, 4
1t =5, - —7rR?’oz'n2

4 2, H 1) ",

(R;) (173)

This is a key result, which gives the rate of advance of the ionization front. Now we can see
explicitly that dR,/dt = 0 when

1/3
3 S*) , (174)

RI:RS:(—

dr an?
so that the HII region stops growing.

We see we have two characteristic quantities, defined by the parameters ny & S, of the
situation: the Stromgren radius Rs and the recombination time

1

trec = . 175
o (175)
Let us make the equation for dR;/dt dimensionless by defining
A= R;/Rg; T =t/trec. (176)
Multiplying through by t.../R2 gives
d\  Sitree 4w
A7 Ny i = 7 — ?)\BnH, (177)
and dividing through by 47n/3 gives
dX
3N =1-X°. 178
dr (178)
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The left-hand side is just dA*/dr, so the solution is clearly
A =1 —exp(—1), (179)

or

Ri(t) = Re[1 — exp(—t/trec)]'?. (180)

14.3 Temperatures in nebulae

How do we know the temperature of the gas in an HII region? This is measured via collisional
excitation, which is the excitation of an atom or ion from its ground state to a higher energy
(excited) state caused by the collision with a free electron:

_ ~ excitation decay
e+ X(n=1) N X(n>1) 7 X(n=1)+7. (181)
By looking at the intensity of lines produced by the spontaneous decay following the excitation,
we can measure the temperature of the electrons. This works because the kinetic energies of

electrons in thermal equilibrium follow a Boltzmann distribution:
f(E) o e BIFT, (182)

If it takes an energy F,: — E} to excite an atom from the n = 1 state to the n’ state, the number
of electrons with sufficient energy will be o exp (F,» — Fy) /kT. Thus, the larger F,» — Fy is, the
dimmer the line n’ — n = 1 will be, since there will be fewer transitions to the higher n’ levels.
Specifically, consider two such levels: n’' and »” where F,» > F,/, Then the ratio of collisions to
the n' level is the n’ level will scale like the corresponding electron densities with the required
energies:

S (B — Ey)  em(Ban =B /KT ~(Epn=E 1) /KT

F(By —Ey) e~ (Ba—BRT — © (183)
If 7,11 and I, represent the intensities of the lines that result, then
Loa  f(Ew = E) AE/KT
o —e ,
Ton1  f (Bnr — ) (184)
where AE = E,nv — Fyi .
Example: OIIl. The emission-line ratio is
1 1
24959 T L5007 o AB/KT. (185)

]A4363

Typical measured temperatures lie in the range 6000 < T < 12000 K. What determines the
temperature?
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A 4363 AE

A 4959

Figure 14. The energy level diagram for the lowest terms of OIII (twice ionized
oxygen). The ground state consists of two electrons in the 2p state, but fine-
structure interactions split this according to the total electron spin and (mainly)
total angular momentum (denoted S,P,D etc.). The relative intensities of the
two sets of lines shown (one a singlet, the other a doublet) is set by the relative
occupancies of the upper levels, separated by AF.

Heating: Heat is added to the HII region by the photoionization process. The typical energy
of a photo-ejected electron is kT, where T, is the effective black-body temperature of the star.
So the total rate of heat input by the star is:

G =S, x kT.. (186)

Cooling: The nebula loses energy due to radiative recombinations. Every time an electron
recombines, an amount of energy k7. (on average) is radiated away. So the total rate of energy
loss is the total recombination rate times kT

4
Lp= %Rf’anz x kT, (187)

H

In equilibrium, we have Ly = G and R; = Rs, where

4
%Rz anl =S, (Strémgren sphere). (188)
So
A o
L= % B and kT, = S.KT, = G = S.kT. (189)
Thus, we find

T, ="T.. (190)

But T ~ 30000 — 50000 K typically (O & B stars), which is much higher than measured. So

what went wrong?
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14.4 Forbidden-line cooling

The problem with the above argument is that it neglects the energy emitted from the nebula
by processes other than hydrogen recombination. The general name for the total loss of energy
by radiation is cooling. this is a bad name, since it implies diffusion of heat, but we are stuck
with it. In discussing the use of species such as OIIl as temperature diagnostics, we introduced
the idea of collisional excitation, and such excitation can contribute to the cooling in a variety
of ways:

(1) Neutral H: emits Lya A1216 plus Ha A6563; Ly« re-radiated in IR by dust;

(2) OII (O1): emits A3726, A3729; (A2470);

(3) Ol1I (O++): emits (A4363), A4959, A5007 (as we saw earlier);

(4) NIT (NT): emits A6548, A\6583

We might expect the collisional excitations of HI to dominate because it is so abundant, but
the trouble is it turns out that the electrons are quite cool, and they lack the energy to excite
HI (since the energy of a UV photon is required). In any case, most of the hydrogen is ionized,
rather than neutral. It turns out that the main coolant for HII regions is the emission from
OII (O7) ions. The collisional excitation loss for O% is

4
Lo+ = ?”Rf’ﬁm, (191)

where the emissivity of O is approximately

; "2
Lo+ =1.1x107% (”?f) e T =i (192)
no /T,

Here, Ty = T./10*K, and we have used high ionization of hydrogen plus the known cosmic

abundance of oxygen to replace the natural collisional term n,ng+ by one o nZ.

So, balancing radiative losses with photoionization heating gives

4 4
Lot = ?”Rf’; Lo+ =G = ST, = ?”Rg an? kT, (193)

= Lo+ = an’kT.. (194)

The hydrogen recombination coefficient can be approximated by

a=2x10710773/4 it (195)
so that, taking ng+/n{" ~ 1,
"2
Low =11 x 107520 e739/T = 95 107197 402 kT, (196)
T4
= T3 =25 x 107 T (197)
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Solving this equation, we find that the nebula can indeed maintain itself at a temperature
well below that of the ionizing star, in agreement with observations:

T./JK T./K
20000 7450
40000 8500
60000 9300

14.5 Forbidden lines and densities

Collisionally excited species are useful not only for measuring and understanding the
temperatures in nebulae, but also for measuring electron number densities. This is because
another name for a line such as the A3727 doublet of OII is a forbidden transition. What
this means is that, owing to the symmetry of the wavefunctions of the upper and lower states,
the transition rate between the energy levels involved in the lines is very low. For example, the
D level in OIIT from which the A4959 & A5007 lines is produced has a lifetime of about 30 s (a
metastable state). This is very much longer than the corresponding figure for permitted
transitions, such as the hydrogen series: for example, the n = 2 level decays spontaneously to
n =1 in a lifetime of about 1079 s, producing a Lya photon.

This long lifetime of forbidden lines is useful, because the line is fragile: if the excited ion
is disturbed before it can decay, the corresponding transition will not be produced. The natural
way to achieve this is collisional de-excitation: the same collisions with electrons that excite
ions can also depopulate the excited levels if they occur too frequently. The collision rate for a
given ion is proportional to the electron number density, with a temperature-dependent coefficient
I'(T). The production of transitions down from a level with lifetime 7 therefore requires

L(T)n, < 77" (198)

Clearly, there is a critical density at which n, = (I't)~!; above this, the transition is quenched
and the spectral line does not occur. Table 8 shows critical densities for some of the oxygen lines,
computed at 7' = 10* K (not terrible temperature sensitive). We see that the intensity ratio for
the A3726 & A3729 OII lines is an excellent way to measure the density, if is is around 10'® m=3,
We can also see why these transitions are unlikely to be observed on Earth: very low-density
gas is needed. For some time, the OIIl A4959/A5007 doublet was thought to result from a new
element: nebulium. The correct explanation was only given by Ira Bowen in 1927.

Table 8 Critical densities for nebular forbidden lines

Ton line critical n,/m™3
OI1 A3726 1.6 x 101°
oIl A3729 3.1 x 10°
Ol 24959 7.0 x 10M
Ol11 A5007 7.0 x 10!
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15 Astrophysical fluid dynamics

So far, the IGM has been treated as static, but this is not realistic. At a minimum, we have seen
that young stars can heat the IGM in their vicinity; such energy input would make the gas tend
to expand. We therefore need to consider the processes that govern the time dependence of the
density and velocity in a fluid.

15.1 The fluid approximation

Before getting on with this task, we should ask whether the normal concept of a fluid is valid
in astrophysics. Ultimately, all fluids are a collection of independent particles. The smooth
and continuous behaviour we associate with e.g. water arises because the mean free path of an
individual particle is normally very short: it is the interactions between neighbouring particles
that give the fluid the ability to show collective behaviour. Since the IGM is a plasma with a
density that is very low by terrestrial standards, we need to worry about how big the mean free
path really is. The mean free path is A = (no)~!, where n is the number density and o the
cross section. A rough estimate for the latter is to say that scattering in a plasma happens if
the electrostatic potential energy exceeds the thermal energy:

62

2 kT. 199
dregr (199)
Taking 0 = nr? and ignoring 7 etc., we get
(60kT)2 o
A =g (T/30K)? (n/10"°m—>)~! m. (200)

This is usually small enough, but not always. For material in the Solar wind near the Earth, A
exceeds the size of the Earth, so the plasma is effectively collisionless. Nevertheless, fluid-like
behaviour is seen, and this is because magnetic field can act as extra ‘glue’ to make the plasma
act collectively.

15.2 Equations of motion

The key concepts governing the behaviour of a fluid are (1) conservation of mass; (2) acceleration
of fluid elements by pressure gradients. We will be content with studying these issues in one
dimension — i.e. the velocity, density etc. will be taken to depend only on z, and be constant
over the yz plane.

To deduce the equations of motion, consider a small box, of area A and thickness Ax.
The amount of mass in this box is M = pV = p A Az, where p is the mass density of the fluid.
This mass can change through the difference between the rates at which mass flows in and out of
the walls. The rate at which mass crosses unit area (the flux density of mass) is pv, as is easily
seen. In time ¢, the fluid moves a distance vAt, and so a volume of fluid A x v(z)At crosses the
wall of the box from the left. Similarly, a volume A x v(z + Az)At leaves the right-hand wall of
the box. The net change in mass in the box is given by the difference in these volumes, weighted
respectively by p(z) and p(z + Az). Since the volume of the box is fixed, this change in mass is
AM = ApV:

AM = ApV = ApAAz = Av(z)p(x)At — Av(z + Az)p(z + Az)At. (201)
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We can consider small intervals so that Ap/At becomes the derivative of p with respect to time,
and v(z + Az)p(z + Az) ~ v(z)p(z) + Azd(vp)/dz. This gives a very simple equation, called
the equation of continuity

op 0
0 __2 () (20

The only subtlety here is that the derivatives involved must be partial: d/dz at constant ¢ and
vice-versa.

The other equation we will need is an equation of motion, or force law. Here, it is easiest
to consider a box that moves with the fluid (i.e. we work in a frame of reference in which the
fluid is instantaneously at rest). Alternatively, we are considering a little parcel of fluid whose
walls are defined by particles, so that no material crosses them. Nevertheless, momentum crosses
the walls, since the pressure in the fluid on either side of the walls acts on them. The net force
on the 4z direction is just the pressure acting on the left, minus that on the right, times the
area A:

F = AP(z) — AP(z + Ax). (203)

This force must equal the mass of the fluid element times its acceleration: pAAzv. Therefore,
we get a simple equation of motion, known as Euler’s equation:

. 1
0= —; OP/0z. (204)

The only subtlety here is the meaning of v. This is a time derivative as seen by an observer who
moves with the fluid, and it is a mixture of time and spatial derivatives as seen in the lab:

0 =0v/0t+vov/dx (205)

(because in a time Af, the fluid moves a distance vAt). The idea here is that the changes
experienced by an observer moving with the fluid are inevitably a mixture of temporal and
spatial changes. If I start to feel rain as I cycle towards my destination, it might be a good idea
to cycle harder in the hope of arriving before the downpour really starts, but it could also be
that it is raining near my destination, and I should stop and wait for the local shower to finish.
With only local information on d[rain]/dt there is no way to tell which is the right strategy.

15.3 Sound waves
Now we have the fundamental partial differential equations that govern fluid flow, we can perform
a very important analysis and ask what happens if we perturb the fluid by changing its density

etc. by small amounts:

p— p+dp. (206)
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We further assume that the unperturbed state is as simple as possible: a fluid of uniform density
po at rest (vg = 0). The equation of continuity is

d(po+46 J

7@0&5 2 _ ~5, (Po +0p)(vo +6v).
00 0
SE = = (po + p)dv (207)
dop _ i&v—ﬁép&v

ot ~ho oz oz

We can make this even simpler by exploiting the fact that the perturbations are small: the last
term contains the quadratic quantity dp dv, which must be negligible compared to pod/dz dv.
The equation of continuity is then

Dép )

Similar reasoning makes Fuler’s equation simple: vq is zero, so the equation is

1 9P
dv/0t+ dvdv/dx = — . 2
dév /0t + dv dv/dx o3 On (209)
Neglecting all second-order terms, this becomes
6P
—po 00v /0t = — 21
po O6v/0 9z (210)

We can eliminate dv from these equations by taking the time derivative of the first and the space
derivative of the second to yield —pod?§v/0tdx in both cases. This gives
d*op 9P
o2 9x?

(211)

Finally, we need a relation between perturbations in pressure and in density. If we define a
symbol

c2 =dP/dp, (212)
then the equation becomes
0*sp  ,0%p
2 g = 0 (213)

This is the one-dimensional wave equation, which has solutions that propagate at velocity c;:
dp = f(z £ cst). The quantity ¢ is thus the speed of sound in the fluid.

We can think of two possible cases for evaluating c¢;. Suppose the fluid was isothermal
—i.e. at fixed temperature 7', so that P = (p/m)kT, where m is a particle mass. In this case,
c2 = kT/m, which just says that the sound speed is of order the internal velocity dispersion of
the particles. More plausibly, the equation of state will be adiabatic, since the fluid may not
be able to radiate away extra energy gained when it is compressed. A better assumption is then
P x p7, so that ¢2 = vP/p. For a simple gas, v = 5/3, so that ¢, is \/% greater than the
isothermal case.
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16 Shock waves

Despite the above analysis, not all waves in fluids have to travel at the speed of sound. Let’s
suppose we have a box of gas at rest. We then drive a piston into it, at first slowly: This will
set up a pressure gradient which will accelerate the gas ahead of the piston (see Figure 15). The
setting-up of the pressure gradient is done by sound waves: they communicate the presence of
the piston to the fluid ahead. And so the fluid will be unaltered at x > c¢z¢. If the piston is
pushed faster, it will start to catch up to the leading sound wave; as it does so, the gradients
of pressure etc. in the fluid ahead become larger and larger. For example, v(z) has to change
from the piston velocity to zero over the distance from the piston position to = = ¢4t, so dv/dz
diverges as the piston approaches x = c,£. What will happen if vpiston > ¢57 The sound waves
will no longer be able to warn the fluid ahead, and yet somehow the fluid must know about the
piston in order to respond. What does the fluid do? It responds by a discontinuous change in
the fluid flow variables — a shock.

vt cst X vt cst X

Figure 15. A piston is driven into a fluid at velocity v at ¢ = 0, so that the
piston position is x = wvt. Pressure waves can move ahead of the piston at the
speed of sound, cg, so that there are gradients in pressure and velocity ahead of
the piston, matching onto the undisturbed conditions (velocity zero; pressure Fp)
for # > cst. As the piston’s speed approaches v = cg, these gradients become
infinite, and a shock front is formed.

The laws of conservation must still apply, so we can relate the fluid variables on either
side of the shock discontinuity, or shock front. Consider a shock front moving at speed vghock
into a stationary gas: it is simpler to look at this in the reference frame in which the shock front
is stationary, so that upstream fluid arrives with velocity ug (= vshock ), and streams away from
the shock with velocity uy (strictly, ug and u; are negative, but it is convenient to reverse the
axis in the shock frame and they are treated as positive hereafter).

If we consider a steady-state shock moving at constant velocity, the conservation laws in
the shock frame are very simple: the amounts of mass, momentum and energy arriving per unit
time per unit area of the shock from upstream, plus any extra amount generated at the shock,
must equal what is transported away downstream.

Mass conservation The flux density of mass is density times velocity. No extra mass is
generated at the shock, so that

Potlo = prug, (214)

in the shock frame, or povshock = p1 (Ushock — v1) in the lab frame.
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(a) Lab frame

Vshock
Post-shock gas Shock Pre-shock gas
(b) Shock frame
Up =V1-Vshock & I Uo = - Vshock
Figure 16. A plane shock front viewed in two reference frames: (a) the frame of

the unshocked upstream fluid; (b) the frame in which the shock front is stationary

Momentum conservation The flux density of momentum is momentum density (pv) times
velocity. Momentum is not conserved at the shock, however, since there will be a difference in
pressure between upstream and downstream. This also generates momentum (because pressure
equals rate of change of momentum per unit area). Thus, the momentum conservation law is

pous + Py = prul + P, (215)

in the shock frame, or povd . + Po = p1(Vshock — v1)* + P in the lab frame.

Energy conservation The flux density of energy is velocity times the density of energy,
which is the density of kinetic energy (pv?/2) plus the internal energy density, ¢. Energy is not
conserved at the shock, since the pressure does work on the fluid as it flows. The rate of working
per unit area is pressure times velocity. The overall conservation equation in the shock frame is
therefore

UO(POU3/2+60)+POUO:Ul(P1U%/2+€1)+P1U1 (216)

We can simplify this; first note that ¢ = 3nkT /2 = 3P/2 for a gas of simple particles, so that
e+ P =5P/2. Secondly, dividing by the equation of conservation of mass (poug = p1u1), gives

1 F 1 P,
—u? + sh _ —u? 20 (217)
2 2 po 2 2 m
In the lab frame, this becomes
1, 5K 1 2 O P
—i — — = — (Ushock — — 218
QUShOCk + 2 pO 2 (U h k Ul) + 2 pl ( )
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We thus have three relations for the three unknowns, wy, p1, Py in terms of ug, po, Fo.
This can be straightforwardly solved, but the expressions are cumbersome. For our purposes we
will make the simplifying assumption that the shock is strong:

P
ug >0 = ug > cs(upstream), (219)
Po

so that the shock is hypersonic. The last conclusion follows from our previous discussion about
sound speeds: ¢2 = vP/p for adiabatic waves, or the same without the v factor for isothermal
waves. We then find the following key relations for a strong shock:

pr . _3 2, 1
p—0—47 P = 7 Potos U1 = 7 o (220)
In terms of v; and vgpeck, noting wg = —vshock and u; = V1 — Vshock; We obtain
3 3
Pl = Z polvszhock; U1 = szhodﬂ (221)

plus an alternative form of the condition for a shock to be strong;:

P1 3 /USQhock

—=->,>1 222
PO 4 PO/,OO ( )

In summary, there are three equivalent criteria that determine whether or not a shock is strong:

(1) it is hypersonic; (2) it has a large pressure jump (P;/Py > 1); (3) the ram pressure (pyu?)

greatly exceeds the upstream thermal pressure, Fj.

These results present a paradox: the shock compresses the gas, and our first thought
might be that this process would be adiabatic, implying

5/3
B (P_l) — 453, (223)
P Po

whereas we have just shown that the pressure ratio across a hypersonic shock is > 1. The
solution is that the compression is irreversible and hence not adiabatic: entropy is generated
through viscous dissipation at the shock (nevertheless, confusingly, these are called adiabatic
shocks, in order to distinguish them from the isothermal shocks studied later). The presence
of viscosity is neglected in the above equations, but this is not correct where the fluid gradients
are very high. The consequence of this is that the shock front is not really an abrupt discontinuity,
but a continuous transition with a width of order the collisional mean free path.

16.1 Isothermal shocks

Often the gas radiates so strongly it maintains nearly a constant temperature on passing through
the shock (see Figure 17). In this case, Py/p1 = Py/po = ¢ by the ideal gas law (constant T’;
co is the initial sound speed). Continuity gives pju; = poug, and conservation of momentum
gives Py = poul — p1ul. Here, we again assume the strong-shock condition pou2 > Pp: since
Py/po = ci, this says that a strong shock is hypersonic, as in the adiabatic case. Now the
condition of isothermality has replaced the energy jump condition.
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Figure 17. An isothermal shock is one where the post-shock temperature

calculated according to the usual adiabatic shock formulae is so high that radiative
cooling is very rapid. The temperature can then return to virtually the pre-
shock temperature within a short distance. This ‘cooling layer’ is treated as being
negligibly thin, and constituting an effective shock front for an isothermal shock.

To solve these equations, divide the momentum equation by the continuity equation,
which gives

P
L+ uy = . (224)
P1uU1
Dividing by wuy, we get
P 2 :
g 1/2p1:1+c—3(u—°) : (225)
Uuq uy Ug Uuq

co = (Po/p0)1/2 is the isothermal sound speed of the pre-shocked gas (which is the same as the
post-shock sound speed, via the isothermal assumption). This is a quadratic equation for ug/u;.
We want the root in which this ratio is > 1 (the shock slows the flow down), so

14 /1 — 4c2 /42 ?
Yo _ 2 ¥ w/u (“—°> as = (226)

— —» OQ.
Uy 2ck/ud co co

Using continuity again, the density ratio is

2
2N (“Sh“k) > 1. (227)

Co

Isothermal shocks can thus be extremely compressive, in contrast to adiabatic shocks. We now
find Py ~ pou?, instead of (3/4)pou? previously, and can also write

P P Ushock 2
1 1 shoc
L guiLLN) NS 228
Po po ( Co ) (228)

as the criterion for a strong shock.
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17 The impact of stellar winds on the ISM

17.1 Eddington limit

Massive O & B stars produce winds with velocities as high as v. = 2000 km s~ Typical
mass-loss rates are M, ~ 1075Mg yr~!, giving a typical mechanical luminosity of
sl o 29

The reason such outflows exist is that the outer layers of high-mass stars are unstable to
radiation pressure: the momentum transferred to material that intercepts photons can be high
enough to overcome gravity. A given photon, of energy F, has a momentum F/c. Therefore, the
rate at which a scattering particle with cross-section o acquires momentum is o/c times energy
flux density:

L
p=— (230)

4rric

This rate of momentum transfer is a force, and it cannot be allowed to exceed the gravitational
force, otherwise the surface layers of the star will be blown away:

olL/(4nrie) < GMm/r?. (231)

Since both these depend on 1/r?, there is a maximum luminosity for a given mass, which is the
Eddington luminosity:

Lgqa = 4nGM S (232)
g

If the opacity is formed mainly by electron scattering, then the appropriate cross-section is o
and we get the maximum rate of radiation

_ mpc a5 M
Lggq = 4nGM =10 (M—Q) L@ (233)

O

(the particle mass is m, rather than m, because the protons supply effectively all the inertia,
even though the electrons do all the scattering). As a side note: humans violate this limit by
many powers of 10. The reason we aren’t blown apart is that the analysis neglects other forces,
particularly the interatomic bonds that hold us together. Since stars at the upper end of the
main sequence satisfy

L)Le ~ (%)3 (234)

we see that stars cannot exceed about 100 Mg without blowing themselves apart. This is very
much an upper limit, since ionic opacity adds to Thomson scattering. In practice, O stars with
M 2 30 Mg lose a large fraction of their mass through these radiation-driven winds in the course
of their main-sequence lifetimes.
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shock 2

(d)

Figure 18.  The geometry of a stellar wind. The central star (*) sends out
a high-velocity wind in region (a). The overall effect is to drive a shock into the
ISM (region d). This is shock 2. Behind this shock, there is shocked ISM, which
is separated from wind material that passes through an inner shock (shock 1) by
a contact discontinuity (CD).

17.2 Shock structure for a wind

These winds produce a hot bubble, even hotter than an HII region. In general, such winds are
confined to the ionized interior of the HII region also produced by the stars. The high velocity
gas drives a shockwave into the ISM. The wind itself forms a second shock against the post-shock
ISM gas, so that four distinct regions may be defined:

(a) Unshocked stellar wind. S;: shockfront of wind

(b) Post-shock stellar wind. CD: contact discontinuity: the pressure is smooth across CD.
(c) Post-shock ISM

(d) Undisturbed ISM

For this system, we can treat the spherical shocks as locally plane. The (adiabatic) shock
jump conditions are

3 1 Pb P, my 3
P =— o 2. Vp = —VUx; — =4: k'l = —— = — [ 2_ 235
b 4/0 (O Up 4U ) Py ) b Py 9 32mHU* ( )

The post-shock stellar wind (region b) forms a high pressure region which compresses the post-
shock ISM (region ¢) into a very thin layer. We may thus consider CD, (b) and S; to coincide
at a distance R from the star, defining the surface of the wind bubble.

How fast does the wind bubble expand into the ISM? Consider conservation of momentum
and energy.
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(1) Conservation of momentum:

d
= ( TR pOR) = 4T R’ Py; (236)

in other words, rate of change of M x v is due to the net force on the ISM from the bubble. P
is the wind pressure; pg is the undisturbed ISM density.

(2) Conservation of energy:

b (2] = (o) 257

or, in shorthand, du/dt = E.— PdV/dt: the rate of change of the total thermal energy of bubble
(> kinetic energy) equals the mechanical luminosity of wind (F. = M,v2?/2) minus the rate
at which the hot bubble does work during its expansion.

We could solve these two equations directly, but it’s much simpler to use dimensional
analysis. First, note that P, can be eliminated, leaving a relation between R, ¢, F., and pq
alone. Now

(] = M2 = 2 (238)

Clearly R should increase with E, and decrease with po- To cancel m, we must take E’*/po,
which gives

[f—ol = f—; (239)

We must therefore take the 1/5th root, leaving t=3/5 and so

.\ 1/5
125 \'* (E ,
— = t /5
(55:¢) (Po ) 210

(where the coefficient of proportionality from a full solution has been inserted). The typical

figures £, = 102 W and ng = 10" m~2 give R = 10~ 3t3/5 pc.

We can differentiate R(f) to find the rate of advance of the bubble, which clearly declines

as t~2/5, For our reference figures, it is R= 650ty 2" kms~1. Once R < cs, the wind dies. This

occurs at t ~ 34,000 yr at which point R = 0.5 pc.
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18 Supernova Remnants

18.1 Types of supernovae

A more dramatic input of energy into the IGM comes from supernovae (SNe for short). These
colossal explosions occur once every 30 years or so in a typical galaxy, and can briefly outshine all
the stars in the galaxy that hosts them. Supernovae come in two-and-a-bit varieties, SNe la, Ib
and II, distinguished according to whether or not they display absorption and emission lines of
hydrogen. The SNe Il do show hydrogen; they are associated with massive stars at the endpoint
of their evolution, and are rather heterogeneous in their behaviour. The former, especially SNe
la, are much more homogeneous in their properties; there is a characteristic rise to maximum,
followed by a symmetric fall over roughly 30 days, after which the light decay becomes less rapid.
Type Ib SNe are a complication to the scheme; they do not have the characteristic light curve,
and also lack hydrogen lines.
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Figure 19. [Mlustrating the universal lightcurve of SNe la. The top panel
shows raw results; the lower panel shows how all curves coincide after applying
a ‘stretch’ to the time axis, which correlates with a shift in the luminosity axis
(approximately the 1.7 power of the time stretch factor). After this calibration,
the SNe are remarkably standard objects. Plot courtesy of Kim & the Supernova
Cosmology Project.
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Type la SNe are especially important in cosmology, since they are very nearly standard
objects: their luminosity at maximum light is correlated with the speed of decline beyond
maximum (more luminous objects shine for longer). By measuring the duration of the
lightcurve, we can calibrate the luminosity, which empirically has a scatter of only 10%. Thus,
the relative brightness of different supernovae can be used to infer their relative distances to a
precision of 5%. This method has been the most important contributor to our knowledge of the
extragalactic distance scale.

The reason that SNe la are standard objects is still somewhat uncertain. The favoured
model is that the explosion results from a white dwarf that has accreted material from a
companion star. Since white dwarfs are all close to the Chandrasekhar mass, the explosions
tend to be similar. The lack of hydrogen in a white dwarf would account for the absence of
hydrogen lines in the spectra of the SNe. In detail, different amounts of energy and mass are
ejected by the explosion. The larger explosions expand for longer before the hot ejecta can
become optically thin to scattering, allowing the radiation to escape. This is the origin of the
correlation between luminosity and lightcurve width.

18.2 Initial phase: blastwave

A supernova ejects about half its mass in the initial explosion, propelling its outer shells into the
ISM with typical speeds of 0.01c. The total kinetic energy of the ejecta is 10** —10** J ~ M;v?/2
for M¢; ~ 4M, where v, is the initial velocity of the supernova shock.

Let po be the density of the gas surrounding the supernova. For an adiabatic shock, the
post shock pressure is

P = Zpg v, 241
Po Vs

so that the thermal energy per unit mass is

P
_3h 99, (242)
2 P1 8 P1 32

€r

(since p1/po = 4). The kinetic energy per unit mass is

1/3 \° 9
€x = 5 (ZUS) = 3—203 (243)

(since v; = 3vs/4). The amount of mass swept up by the shock is

4
Mg = §7rpoR3, (244)
so the total energy is
4 3 3 3,2
Fiot = §7TR po (€r + €x) = ZWPOR vy . (245)

Now, vy = R, and Eyo = Fsy = blast energy, so

By = Eyor = — poR°R?. (246)



We have an equation for R in terms of Fgy, pg, and t. Once again, dimensional analysis gives us

ML? M
[ESN] = t—Q; [Po] - ﬁ7 (247)
80
o\
R = constant ( SN) £2/°, (248)
Po
Solving the equations in detail gives
95\ /%
constant = (3—5) =1.2. (249)
s

Knowing R(t), we differentiate to get the shock speed:

. 92 925 1/5 E 1/5
v, =R=2(22 N t=3/5, 250
’ 5 (3”) ( Po ) (250)

Taking Fsy = 10** J, ng = 10°m ™3, we get

R ~0.35 t?,{‘r’ pc
R ~140,000t,,*/° kms™" (251)

4
]V[Shell = §7I'R3p0 ~ 0.004 ts{s M@

(because pg ~ 0.025M pc™3 for ny = 108 m_3). Note that this solution must break down at
early times, as it predicts a velocity that diverges as ¢ — 0. In fact, the similarity solution only
starts to apply at about 600 yr, where vs ~ 0.01c is predicted (the initial ejection velocity). At
this time, the predicted shell mass is of order the mass of the original ejecta: another way of
looking at this is that the similarity solution sets in once the blastwave has swept up much more
mass than was originally ejected.

18.3 Radiative phase

Initially the post-shock gas temperature is

kT, = i*mH v?

' 252

(allowing for p = 1/2: e~ & H™), so T} ~ 10® K for v; = 3000kms~!. The temperature
decreases with time like v2:

3 my 4 (25\2° [ E 0\ -
T = 3_2%% (3_7T) (P—j) £0/% =5 x 107t1060/()5yrs K. (253)

This assumes an adiabatic shock —i.e. that radiative cooling behind the shock can be neglected.
To see whether this is true, we have to consider the interstellar cooling curve, shown in figure
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20. Here, one expresses the volume emissivity, ¢ (power radiated from unit volume), in terms of
a constant times the square of the hydrogen density:

e = A(T)nk. (254)

The density-squared law applies to the collisional processes that we studied previously. It also
applies to bremsstrahlung, or free-free radiation: radiation emitted from electrons accelerated
by the electrostatic field of ions. This process dominates at high temperatures, T 2> 10°% K.
At lower temperatures, collisional processes dominate (especially from oxygen), and the cooling
curve has a sharp peak at T ~ 3 x 10° K. Once the post-shock material reaches this temperature,
it will very rapidly radiate away all its internal energy, to reach a temperature of order 10* K
— similar to much of the undisturbed ISM, for the same reason. This occurs at t = 70,000 yrs,
R ~ 30 pc. At this time vy ~ 170 kms™1.
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Figure 20. The cooling curve, defined such that the volume emissivity of

the plasma, ¢ is ¢ = A(T)n%. The two curves show results for hydrogen+helium

only, and including Solar metals. The emissivity falls below 10* K, as the plasma
becomes neutral. Above that temperature, collisional excitation of ions dominates,
with bremsstrahlung or free-free radiation taking over for T 2 10% K.

The cooling time is

2(2ny) kT
teool = ——— ~ 2 x 10 s = 6500 yr 255
1 'TLQHA(T) X S yr ( )

(using the fact that A(7") ~ 1073* W m? at the peak of the cooling curve, and taking n = n, =
n. = 10° m_3). The shock moves a distance

cooling length = £.oo1 = Vs teool =~ 1 pc (256)
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in this time, picking up an additional amount of material

Meool = 47 R? Lego1 po = 300M g > M. (257)

All the mass of the supernova remnant (SNR) is in the shell, which has now radiated away
all its pressure.

18.4 Momentum-conserving (‘snowplough’) phase

The total mass in the SNR at this time is
Am o
Meyr = ?R po == 3000M (258)

(for R = 30 pc and ny = 10°m™?). Although the blastwave pressure has been radiated away,
the SNR continues to expand by momentum conservation:

4 .
%R?’poR = M = constant. (259)

If we wait long enough that the size and mass of the SNR are much greater than the size and
mass at the end of the radiative cooling phase, then dimensional analysis gives

ML M
[MO] — T &Hd [po] = ﬁ’ (260)
so that
1/4
R = constant (&> /4 (261)
Po
and
| 1/4 ~
R = 7 constant (&> 17304 ~ 4000 t1ghy s, km s~ (262)
Po

Eventually, R reaches the ISM sound speed, and the SNR dissipates. For 2 = (5/3)kT/m, and
taking T = 10* K and ng = 10°m ™3, we get ¢, ~ 17kms™!, so the SNR dies after about 10°
years.
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18.5 Filling factor of SNe

What fraction of the disk of the Milky Way is in a SNR? A typical SNR radius is 100 pc and
will last about 10° years before dissipating. We estimate about 1 SN every 30 yrs, so in 106 yrs

10° 4
NSNR — % — 33 X 10 (263)

SNR at any one time. The volume occupied by these SNR is then

4
Vewn = Neyn X ?"RE‘ = 140 kpc®. (264)

SNR

The radius of the Galaxy is ~ 15 kpc, and its thickness is about 200 pc = 0.2 kpc, so its volume
is ~ (15 kpe)? x 0.2 kpe = 140 kpc®.

The mean number of SNR at any given point is thus:

‘/SNR

‘/Galaxy

~ 1. (265)

Since SNR can overlap, the volume of the Galaxy in SNR is actually smaller: Poisson statistics
= probability of no SNR at a given point is exp(—vsyr/VGalaxy), and so the fraction of the
Galaxy filled by one or more SNR is

foxn=1- eXP(_'USNR/'UGalaxy) ~ 0.6 (266)

So most of the Galaxy, including probably us, is in a SNR.

This sum only counts the active SNR (i.e. those that exploded in the last 10° years).
Since the galaxy is of order 10'° years old, we see that our neighbourhood has been affected by
SNe at least 1000 times. One of the most important functions of supernovae in the ecology of the
galaxy is to distribute the heavy elements that are made in the precursor star, thus enriching
the ISM. This is the reason that the Sun contains metals even though it is young: it formed
from gas that had been enriched by supernova explosions. The same also applies to the planets,
which only form because the pre-Solar nebula is already rich in metals.
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