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Cosmological dynamics

Gravity and spherical bodies

If the size of the universe is proportional to the scale factor, R(t), how do we determine how
this varies with epoch? This sounds a nasty problem given the complexities of curved space,
but in fact the tools needed are very simple ones.

Newton was the first to understand two special properties of gravity. One is familiar
from everyday experience: the Earth’s gravity appears to pull towards its centre of mass, as if
all the mass was concentrated there. Look at the inverse-square law for the gravitational
acceleration, a, towards a body of mass M at a distance r:

a=GM/r?,

where ( is the gravitational constant. This expression says nothing about the size of the body,
and Newton was able to probe that this equation gave the right answer for a spherical body
of any radius up to r.

If the body becomes larger than r, we have a combination of a smaller body and a
spherical shell. Newton’s second achievement was to show that the force inside any uniform
spherical shell vanishes: to a particle inside the shell, the mass might as well not be there. So,
if you could excavate a little hole at the centre of the Earth, you would float weightless there,
just as in deep space.

Friedmann’s equation

These properties of gravity are all the tools that are needed to derive the dynamics of the
expanding universe. This was first done in 1922 by the Russian mathematician Friedmann;
sadly, Einstein thought he was wrong, and Friedmann died in 1925, before the observational
fact of the Hubble expansion was established. Friedmann used a highly algebraic argument in
relativity, and would probably have been surprised that the simple argument used here works.

In any case, imagine a small spherical region of the universe, of radius R(t). This sounds
like it has to be the whole universe, but the scale factor is just proportional to the size of the
universe, so we can always choose it to be small at a given time. A galaxy on the edge of
this ball is pulled towards the centre by gravity, but is unaffected by the galaxies at larger
radii. The mass within the ball is the product of density and volume: M = p x 4w R?/3. This
mass stays constant as the ball expands. Notice that this requires the following dependence of
density on the size of the universe:

pox R(t)7°.
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Not surprisingly, the matter becomes more tenuous as the universe expands.

The problem is now amazingly simple: the equation of motion for the marker galaxy at
radius R is just the same as that for a cannonball moving in the gravitational field of the Earth.
We solve this via conservation of energy: kinetic energy (mwv?/2) plus gravitational potential
energy (—GM/R) is a constant. The mass of the galaxy, m, appears in both terms, so it can
be factored out and absorbed into the definition of the constant. This gives the equation

2 GM v?  AnGpR?
— —— =constant = — — ——.

v
2 R 2 R

Finally, we can use Hubble’s law to write v = H R, and multiply by 2/R? (absorbing the factor
of 2 by redefining the constant) to get Friedmann’s equation:

H? — 87Gp/3 = constant/R(t)*.

It is astonishing to think that the whole universe, perhaps infinite in extent, is compelled to
obey this simple equation. To get it, we have only cheated slightly: Newton’s results were based
on the inverse-square law, and we might worry about using this in a curved space. Fortunately,
Birkhoff’s theorem says that Newton’s results carry over exactly into general relativity.

From the point of view of the scale factor, what we have called the big bang now
corresponds to asking whether the solution of Friedmann’s equation has a singularity - i.e.
whether R(t) goes to zero at t = 0. We will see later that this singular behaviour does exist: a
region of space that is now billions of light-years across originated from a tiny volume that you
could hold in your hand. However, this doesn’t have to mean that the whole universe becomes
concentrated into a single point: if the universe is open, there will still be an infinity of space
and matter at larger distances. It’s best to think of the singularity as a point of infinite density,
rather than zero size.

The density parameter

Having got Friedmann’s equation, what does it mean? There is an unknown constant, which
represents the total energy. There is a critical density at which this vanishes:

perit = 3H?/(87G) = 0.79 x 10" kgm >,

or roughly just one atom per cubic metre! This is the density below which the universe has
escape velocity; a particle thrown from the surface of the Earth at about 4 miles per
second will escape from the Earth’s gravity entirely, and the analogue of this in cosmology
is that R(t) increases without limit. On the other hand, if the density exceeds the critical
value, the universe behaves like a ball thrown upwards with only moderate speed: gravity will
eventually halt the expansion, and the universe will then start to contract, heading towards a
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big crunch as the density rises without limit. Because of the important role played by the
critical density, it is very common to define a dimensionless density parameter:

Q= p//ocrit-

Q and h are the two numbers that all cosmologists want to be able to measure.

This Newtonian discussion has missed one very important thing, which can only be
proved using general relativity: the constant in Friedmann’s equation is related to the global
geometry of the universe:

2 >1: closed universe

Q <1: open universe

It is reasonable enough that more mass makes space more curved, but it is a very deep coinci-
dence that the critical density for expansion coincides with that for curvature. A closed universe
is also the one that will re-collapse; not a nice thought if you suffer from claustrophobia.

Observational cosmology

How are we to measure 27 We will describe the main methods later in some detail. One is
direct: try to measure the local mass density. The other depends on the way in which the
expansion of the universe affects the appearance of distant objects. At small distances, we can
ignore the curvature of space and just use the inverse-square law for flux:

L
f_47rr2’ "=

cz
H’

where f is the flux density and L is the luminosity. For large redshifts, this simple linear
relation is not applicable. This is partly due to the curvature of space, but partly due to the
acceleration of the expansion. If gravity is slowing the expansion down very strongly, then we
see a more rapidly expanding universe when we look to large distances (i.e. back in time). At
a given distance, the redshift will therefore be larger for a greater deceleration (greater 2);
alternatively, for a given redshift, the distance will be smaller and so the object will appear
brighter. This fact will be used later to weigh the universe.

The radiation era

So far, we have only considered a universe containing simple forms of matter, whose density
scales as p o R™3 (e.g. rocks). One important exception to this is radiation. Suppose we
fill the universe with photons of a given energy, E. Because of the redshift, this energy falls
as E o« 1/R; through E = mc?, this means that the mass of each photon falls as well. The
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radiation density is the energy times the photon number density, which scales as R™3. Overall,
we get the faster behaviour

—4
Pradiation X R .

Suppose the universe contains a tiny amount of radiation now: perhaps pradiation/Pmatter =
1071%, Nevertheless, the different power-law behaviours of the density mean that the radiation
was more important in the past. The ratio was 107 when the universe was 10 times smaller
(z = 9), etc. Eventually, the two densities must cross over, so there is always a radiation-
dominated era at early times.

Friedmann’s equation turns out still to apply, independent of the nature of the mass —
just add the radiation to p and allow for its different dependence on scale factor. We won'’t go
into how to solve the equation, since this needs calculus, but it is worth quoting the answer
for the time dependence of the the scale factor, and how this depends on the type of matter:

R x t2/3 (matter dominated)

R x t'/? (radiation dominated).

These results assume 2 = 1.

The horizon

An important question is: how much of the expanding universe can we actually observe? If
the universe is now 13 billion years old, then light can only have travelled a distance d = ¢t,
i.e. 13 billion light years or about 4000 Mpc. This distance corresponds to an infinite observed
redshift, and objects at greater distances will be invisible.

You might think this argument is wrong. After all, the universe was smaller in the
past; doesn’t this allow light to get from object to object more easily? After all, what is now
4000 Mpc was once only 1 cm if you go to early enough times. In fact, this doesn’t change
things, because the universe expands very fast at early times; a photon that starts off at ¢t =0
doesn’t catch up with much material, because it is receding at nearly the speed of light.

This means that the cosmological horizon was very small at early times: the presently-
observable universe was divided into zones that could not communicate with each other until
now. This turns out to be an important clue to how the expansion got started.



