#### **Theoretical Issues Facing Weak Lensing Analyses**

### **Discussion**

Martin White July 2005

# **Theory and Analysis**

- N-body simulations
  - -Ray tracing vs Born
  - -Numerical convergence/computational cost
  - -Grids and interpolation
- Extra physics
  - —How (much) will this limit us?
  - —Approximate treatments
- Metrics to compare theory and data
  - —For overall power 2-pt shear  $\xi(\theta)$  seems optimal
  - —What is best measure of non-Gaussianity?
  - —Radical compression of huge amount of low-S/N data to a few high-S/N objects
- Intrinsic alignments and source contamination
  - —How do we deal with this in D/A?

## **Tests of the MLP**

With Chris Vale we have made extensive tests of the MLPA and its convergence properties:

- The effect of border discontinuities
- The "ray-plane perpendicular" approximation
- The first fully 3-d ray tracing protocol
- Time evolution effects
- Number of lens planes necessary
- Numerical resolution issues
- Test common analytic approximations

Vale & White (2003)

Bottom line: MLP is good to at least a few percent in the power spectrum; the limiting computational cost is the generation of N-body simulations.

## Advantages and disadvantages of maps

- When simulating WL can choose to work with just the power spectrum, or with simulated maps.
- Advantages
  - —Can test/refine D/A algorithms
  - —Can look at higher order functions
  - —Allow cross-correlation studies etc.
- Disadvantages
  - —Contain extra numerical artifacts
  - —Limited field of view (<100 sq. deg./map)

## **Computational cost**

Almost all of the CPU cycles are spent on the N-body simulation, which is also the major accuracy driver.

There are, basically, two kinds of simulations: high and low force resolution (PM) which differ in cost by ~x10.

| Low resolution (PM)                 | High resolution (TPM)                 |
|-------------------------------------|---------------------------------------|
| 128 <sup>3</sup> ~ 10 CPU hours     | 128 <sup>3</sup> ~ 100 CPU hours      |
| 256 <sup>3</sup> ~ 100 CPU hours    | 256 <sup>3</sup> ~ 1,000 CPU hours    |
| 512 <sup>3</sup> ~ 1,000 CPU hours  | 512 <sup>3</sup> ~ 10,000 CPU hours   |
| 1024 <sup>3</sup> ~10,000 CPU hours | 1024 <sup>3</sup> ~ 100,000 CPU hours |

### **Numerical convergence**



Increased resolution and particle number, with low-*k* modes fixed between runs to eliminate sample variance.

PM - low force resoln.

TPM- high force resoln.







Current accuracy is a few percent among the better codes.

## **Accuracy - mass function**



For many measurements the mass function is also important.

Update of Heitmann et al. (2005)

# **Adding Physics**

- If numerical effects can be bought under control, the next issue is correctly modeling the appropriate physics.
- On small scales non-gravitational forces come in to play.
  - —Baryonic pressure and cooling affect C<sub>1</sub> at % level beyond *I*~1000-3000.
    - Given an N-body simulation can compute potential and hence equilibrium distribution of hot gas (given equation of state).
    - Can use adiabatic contraction models to approximate the effects of cooling baryons

– But Kazantzidis et al.?

## Meeting ground between theory & observation

- Getting cosmology from weak lensing requires us to <u>compare</u> exquisite data with reliable theory.
- What are the right statistics with which to make this comparison?
- Overall power level
  - —Two-point shear correlation functions
- Non-Gaussianity
  - —Three-point functions
  - —Aperture mass statistics, generalized skewness
  - —Peak statistics

## **Intrinsic alignments**

- Lots of numerical and analytic arguments
  - Croft & Metzler (2000); Heavens, Refregier & Heymans (2000); Catelan, Kamionkowski & Blandford (2000); Lee & Pen (2000, 2001); Crittenden et al. (2001); Mackey, White & Kamionkowski (2002); Jing (2002); etc

—Mostly untrustworthy!

- Very few measurements
- Several ways of suppressing intrinsic alignment effects
  - King & Schneider (2002, 2003); Heymans & Heavens
    (2003); Heymans et al. (2004); Takada & White (2004); King
    (2005)
- Possible "extra" effects: GI correlation
  - —Hirata & Seljak (2004)
  - —Vanishes for  $\epsilon \sim L^2$  as predicted by tidal torque theory