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Overview

Each analysis scheme measures something 
about stellar shapes in order to correct 
galaxy shapes:

KSB: Shear, smear polarizability matrices
Shapelet Deconvolution: Shapelet 
coefficients of PSF
BJ02 Reconvolution: Rounding kernel
RegLens: Non-Gaussian PSF residual
etc.



Overview

The PSF shapes are generally not constant 
across an image.

So correction needed at galaxy location 
requires interpolation from nearby stars.



Polynomial Interpolation

The easiest interpolation method is to simply 
fit each component of the PSF measurement 
as a polynomial in (x,y).

Typically somewhere from 2nd to 4th order 
polynomials are required.

Lower order gives poor fit.
Not enough stars to fit higher order well.



Rational Functions

Henk and Ludo found that rational functions 
described their PSF variations better than 
simple polynomials for a given number of 
fitting coefficients.

For example:
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Dense Stellar Fields

Henk also tried observing dense stellar fields 
to fit a high order function, and use the 
stars in individual fields for a lower order 
correction.

Only somewhat effective, since different 
exposures have variations in the PSF pattern 
of order unity.



Principal Components

The variaion from exposure to exposure tends 
to follow the same rough patterns.

A bunch will look one way, some others 
another way, etc.

Potentially, we could use all the stars in 
similar looking patterns to fit the patterns 
more accurately and to higher order.



Principal Components

Presumably, these variations are due to 
physical differences at the telescope for the 
different exposures

How far above/below focus
Degree of tracking error
Flex of telescope pointing off-zenith
Vibration or flex due to wind, etc.



Principal Components

Describe PSF function as sum of several 
components:

Exposures are i index
Principal components are k index
n is order of polynomial function
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PCA Algorithm

Start with lower (say 4th) order fits:

Treat each polynomial as a vector of 
coefficients.
Then all coefficients for all exposures are a 
matrix: A (Nexp x Ncoeff)
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PCA Algorithm

Perform Singular Value Decomposition on this 
matrix:

U is (tall) column-unitary
S is diagonal
V is square unitary.

A USV=



PCA Algorithm

Rows of SV are initial principal components 
(still 4th order functions).

Elements of U are α coefficients.
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PCA Algorithm

Next, keep α’s constant, and fit for higher 
(say 10th) order functions for P’s.
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PCA Algorithm

Optional improvements:

Find better α’s given the new higher 
order principal components.  Can iterate 
solving for P’s and α’s a few times.
Use rational functions instead of 
polynomials - will probably better describe 
the underlying function.
Can use dense stellar fields in addition to 
lensing data.



Results

For CTIO survey, B mode now consistent with 
zero down to 1 arcminute.





PCs for CTIO Mosaic

PC 0: Static pattern.
PC 1: Focus errors - primary mirror 
astigmatism, and off-axis camera.
PC 2: Guiding errors.
PC 3: Unknown.
PC 4: Probably variable trefoil as relative 
pressure on “hard points” varies.
PC 5: Unknown.
PC 6: Probably mirror or support flex - 
correlated with hour angle.
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Limits to PCA

There are three places systematic errors can 
result using PCA:

Principal components can be estimated 
incorrectly.
One can use too few principal components 
to fully model patterns.
Coefficients (α) can be estimated 
incorrectly.



Limits to PCA

Principal components can be estimated 
incorrectly:

The systematic errors on the principal 
components decrease as 1/√N, where N is 
the total number of stars used in fits.
This systematic error decreases for larger 
surveys along with statistical errors.



Limits to PCA

Too few principal components to fully model 
patterns.

We use PCs with singular values > 0.01 
times largest singular value.
This gives about 25-30 PCs.
The optimal number to use will require 
some more investigating.
Trade-off: more PC’s are each fit slightly 
less well.



Limits to PCA

Coefficients (α) can be estimated incorrectly.

α is only fit from stars in a single 
exposure.
Need (minimum) as many stars as PCs.
Errors (roughly) inversely proportional 
to total S/N of stars in exposure.
This systematic does not decrease for 
larger surveys.



Limits to PCA

Coefficients (α) can be estimated incorrectly.

Only affects correlation function when 
both galaxies are from same exposure.
Can completely remove it by only using 
pairs from different exposures.
Errors in α’s are then statistical error, 
not systematic.


