A Weak Lensing Pixel Scale Study

F.William High Harvard 23 August 2007

with Jason Rhodes, Richard Massey & Richard Ellis

Outline

- Background & Motivation
- What is pixelation?
- Method, Data & Results
- Future work & Discussion

At a glance

Motivation

- SNAP's pixel scale is 0.1"
- SNAP's PSF size is ~0.14"
 => not Nyquist sampled
- How would changing the pixel scale affect WL cosmology?

What is Pixelation?

F. William High

What is Pixelation?

- In CCD science, it is a physical process
- Photons liberate bound electrons in the CCD substrate
- Photoelectrons are collected in potential wells
- Photoelectrons are counted
- The number is assigned a position

F. William High

WL@JPL

What is Pixelation?

- It is also a **side-effect** of ightarrowreductions
- Pixel binning
- WCS registration (eg, Swarp) С
- Co-addition \bigcirc

F. William High

Method

- Use fake images (a la Massey) with known shear at different pixel scales (like STEP3)
- Fix
 - Number of pixels
 - Exposure time
 - PSF + charge diffusion

- Vary
 - Pixel size (0.4"-0.16")
 <=> survey size
 - Input shear
- SNAP diffraction with 6 micron charge diffusion
- Recover shear with RRG

F. William High

Method

- Single exposure and ideal deinterlacing studies
- "Ideal deinterlacing" == Drizzling with deltafunction resampling to 1/2 the pixel scale
- 2x2 half-pixel dithers
- 1/4 the exposure time => same effective exposure time after coadding

Data

Table 1.	Summary	of	the	simulated	images.
----------	---------	----	-----	-----------	---------

Labelª	Varia.ble ^b	Plate Scale	$\sigma_{ m ch}{}^{ m c}$	Dithered?
PH	Photosite size in μm	10″mm ⁻¹	$4\mu m = 0.04''$	No
PH_d				Yes
FL	Focal length (plate scale)	$10'' \mathrm{mm}^{-1} \times \frac{\theta_{\mathrm{ord}}}{\theta_0}$	$4\mu m = 0.04'' \times \frac{\theta_{cod}}{\theta_0}$	No
FL_d				Yes

^aThe shorthand label assigned to a common set of simulated images.

^bWhat is perturbed in order to change θ_{ccd} .

^cStandard deviation of the Gaussian charge diffusion kernel as a function of perturbed CCD pixel scale.

F. William High

PSF size versus pixel scale

F. William High

WL@JPL

Mag and size histograms at 0.04", 0.1", 0.2"

F. William High

WL@JPL

Data

Shear dist at 0.04", 0.1", 0.2"

Kurtosis - 3

• NOT n_{eff}

- n_{gal} decreases with larger pixel scales
- Ideal deinterlacing does NOT increase ngal (top) and in fact decreases it if smaller CCD pixel scales would have meant smaller charge diffusion (bottom)

F. William High

ngal

Multiplicative bias

- Some sytematic trends with pixel scale
- Noisy at large CCD pixel scales
- Different values for the 2 shear components
- Dithering doesn't reduce bias noise

F. William High

WL@JPL

$\sigma_{\gamma}\&\sigma_{e}$

- The RRG shear estimator reduces shape scatter (cuts?)
- Dithered gals are rounder in terms of ellipticity
- Dithered gals give the same shear scatter as the single exposures

F. William High

WL@JPL

- Smaller pixels always reduce shear errors
- Ideal deinterlacing helps
- Charge diffusion bad

F. William High

WL@JPL

Error on C_{ℓ} 's

- Tradeoff: survey size and pixel resolution
- If ch diff goes with pixel scale, then 0.1" is best (0.16" or so with ideal deinterlacing)
- If not, larger pixel scales are always better (?!)
- Ideal deinterlacing always helps

F. William High

WL@JPL

Future Work

- More realistic simulations
- PSF-deconvolved Shapelet catalog
- Full cosmological parameter estimation (not just ΔC_{ℓ})
- Use other methods
- Vary shear and perturb PSF

The Last Slide

- astro-ph/0703471
- Questions/comments: <u>high@physics.harvard.edu</u>