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Motivation & Problems

• When you’re asking for several $100M, you’d better understand how 
well your measurement will work! (including checking your calculations)

• Many idealizations in most forecasts, which may lead to substantial 
overestimates of capabilities:

• There are { no intrinsic alignments | only II | intrinsic alignments have 
simple functional form}

• The Universe is described by GR with an isotropic DE with w0/wa 
eqn of state.

• Galaxy densities are linearly biased w.r.t. mass with pure Poisson 
noise (e.g. fully correlated)

• Photo-z errors {don’t exist | are just biases | have Gaussian 
distributions}.

• All of the galaxies (or all in a bin) have the same shear calibration 
errors, same intrinsic correlations, same bias & correlation 
coefficients w.r.t. mass and to each other.
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Challenges
• The “dark energy,” modifications to GR, and many systematic 

effects are free functions of redshift, scale, galaxy type, etc.  
Assuming that they have particular functional forms can make 
them artificially easy to distinguish.

• Problems that are easily solved in isolation may be difficult to 
solve in combination.  Example:

• “Well known” that power-spectrum tomography only 
requires photo-z’s accurate enough to generate 3 or so 
bins (e.g. Hu).

• “Well known” that intrinsic alignments (at least II) are 
easily removed with use of photo-z’s

• But Bridle & King note that tomography with simultaneous 
intrinsic-alignment rejection places much stronger 
demands on photo-z.
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Desire a WL forecast that includes all important systematics.  Also 
treat dark energy, gravity alterations, and systematics as generally 

or non-parametrically as possible.
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Benefits

• Most forecasts make use only of power-spectrum tomography, to 
some predetermined maximal l.  Much more info is available from 
WL survey:

• High-l lensing carries information, even though must 
marginalize over theoretical power-spectrum uncertainties.

• Galaxy-galaxy, galaxy-shear, and shear-shear 2-pt info can work 
very well together (Hu & Jain, Zhan)

• 3-point shear info (even ignoring SGG, SSG, GGG signals, plus 
III, GII, GGI contaminants....) (Takada & Jain)

• Peak statistics (clusters) (Hennawi & Spergel, Marion & 
Bernstein, Wang et al, ...)

• Using multiple statistics can isolate systematics and reduce their 
detriment.  Example: galaxy-shear correlations reduce impact of 
intrinsic correlations?
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Generalized WL Analysis

• The Universe has FRW 
metric with some 
curvature and mass 
densities

• Galaxies are assumed to 
line on a series of shells 
at nominal redshifts 

• Each shell has

• Ang-diam distance

• Comoving thickness

• A mass distribution 

• which is produced 
from some power 
spectrum:
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Di

∆χi

milm

zi or ai

ωk, ωm

Pm(l/Di, zi)
We may have some cosmological model that specifies 
distances, power, etc, but for now leave them all as free 
parameters and see what combinations are constrained 
by observations.



Bernstein 

Generalized WL Analysis (2)

• If light travels on geodesics of perturbed RW metric:

• and the matter field sources all the potential fluctuations

• and GR is correct about Poisson equation with 

• then gravitational lensing induces a convergence (and matching E-mode 
shear) on shell i of

• with

• We may add additional terms to Aij to reflect non-GR Poisson eqns or 
clustered dark energy.
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ds2 = (1 + 2ψ)dt2 − a2(t)(1 + 2φ)dx2

φ = −ψ

κlens
i =

∑

j<i

Aij

3ωmDj ∆χj

2aj

mj

Aij ≡

{ Dij

Di
≈ (1 − Dj/Di)(1 − ωkDiDj/2) i > j,

0 i ≤ j.
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Robustness of lensing cosmology
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Aij = (1 − Di/Dj) (1 − ωkDiDj/2) (i < j)

Change in expansion history at some z alters 
these

Change in growth or bias at some z affects
Error in shear calibration at some z affectsIntrinsic alignments appear here

Curvature affects
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Generalized WL Analysis: Observables
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• We use photo-z or other information to divide the observed galaxies 
(or 21-cm data, other observables) into sets.  For each set we observe 

• A density field 

• and/or a lensing field

• Each galaxy in set     has probability       of being on redshift shell i. 

• At each spherical harmonic, the observable quantities are

• where each subset of the sources has its own density, shear cal error, 
and intrinsic-alignment “convergence” signal.

gαlm

καlm

α pαi
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i

pαigαi

κα =
∑

i
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Likelihood for density/shear

• On each redshift shell i there are variables

• Assume Gaussian and Limber, i.e.:

• There is no correlation between distinct redshift shells or 
spherical harmonics 

• Within a shell, the above variable have multivariate 
Gaussian distribution.

• Then the likelihood is fully described by the covariances 
which are power spectra: 

• Note appearance of II and GI terms in analogy to bias and 
correlation coefficients of galaxy clustering.

• Since the observables are linear functions of these variables, 
they also have a multivariate, zero-mean Gaussian likelihood.  
Usual Fisher matrix and data-fitting techniques will apply.
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Parameter Hell

• A beautiful non-parametric likelihood expression for the likelihood of 2-point 
survey statistics.  But aside from the desirable cosmological parameters 
(curvature, distances) we have a vast number of nuisance parameters:

• Probability p for every subset of galaxies (i.e. photo-z error distributions)

• bias and correlation coefficient of galaxy density of every subset of galaxies 
which is also function of k.

• bias and correlation coefficient of intrinsic “lensing” signal of every subset of 
galaxies which is also function of k.

• even worse: there are huge number of cross-correlation terms

• Structure-formation models will never be able to tell us what all these should 
be; neither will we be able to conduct an analysis in which they are all free, so 
some model with limited number of parameters will be necessary.  But it 
shows that present modeling is grossly simplified even in Gaussian 
approximation. 
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Prior Salvation

• N-body modeling will provide prior on the mass power (exact prior at 
low k, weaker at high k).  Will depend on:

• Primordial spectral parameters

• Transfer function parameters

• Growth function at each redshift shell

• maybe some more, for modified gravity.

• Physical model for galaxy biases/covariances may be possible: halo model 
in Hu & Jain, but substantial additional “adjustment” parameters likely.

• Intrinsic alignment models of useful precision are not likely, so we’ll need 
generic functional models (polynomials, etc.).

• Note that the observational Fisher matrix already includes all “galaxy-
galaxy” lensing and “cross-correlation” information.

• Also if there are spectroscopic survey samples, they become “sets” and 
their cross-correlation with source galaxies incorporates Newman’s 
technique for constraining source redshifts.
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Prior from Redshift Survey

• An unbiased and complete redshift survey of        galaxies in set    yields 
observables         counts of galaxies in each subset.  The likelihood is

• and the corresponding Fisher matrix over the probabilities is

• Any stronger prior constraints on the       would have to come from 
assuming that spectra of un-surveyed galaxy sets are exactly the same 
as those in survey sets.  How will we be able to quantify our trust in 
this?
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Three-point information
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• The expected bispectrum can also be expressed in terms of 
the same dark-energy-agnostic parameters as the general 2-
point function; in approximation of Scoccimarro & 
Couchman, 3-pt is a function of the linear & non-linear power 
spectra.

• Implement as in Takada & Jain, gaussian error model  for the 
bispectrum components.  Ignore intrinsic 3-pt correlations, 
etc., for sanity

• Takada & Jain (in prep) show that Gaussian-uncertainty 
approximation isn’t too bad.  Just add a new 3-pt Fisher 
matrix to the 2-pt matrix. 

• More complex than PS, likelihood does not separate into ilm 
terms; must limit to <~5 redshift bins for feasible 
computation.
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Peak-Counting Information

• Presume that peaks in convergence distribution are located using a 
multiscale filter matched to angular and redshift dependence of 
clusters (as per Marion & Bernstein).  Observables are peak counts vs 
convergence strength and redshift above safe detection threshold.

• Sheth-Tormen formula gives convergence peak counts as simple 
function of linear power spectrum plus growth and distances to 
redshift shells - again dark-energy agnostic parameter set.

• Build Fisher matrix assuming Poisson errors (and clustering).

• Takada & Bridle show that cluster counts are reasonably independent 
of 2-point statistics (but bispectrum?)
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Results

• None.
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Results on spectroscopic prior: Zhaoming Ma

• Use simplified case of power-spectrum tomography, no 
intrinsic alignments, no shear cal errors, simple DE model.

• But now allow photo-z error distribution to be more 
complex than Gaussian, formalism allows arbitrary 
parametric function.  Choose sum of up to 4 Gaussians, so 
8 parameters per dz=0.1 instead of just 2 params.

• Drop assumption that true n(z) is known; we only know 
distribution of photo-z’s.

• Now plot dark-energy uncertainty versus size of unbiased 
spectroscopic redshift survey.
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Results on spectroscopic prior: Zhaoming Ma
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Results on spectroscopic prior: Zhaoming Ma

• Use of single-Gaussian model underestimates size of 
required training set by few-x, or overestimates DETF 
FOM by 40-100%, depending upon true fiducial model.

• Few 10,000 - 100,000 spectra are sweet spot for LSST or 
SNAP-scale survey (but must be complete!)

• 6- and 8-parameter photo-z distributions are not really 
worse than 4-param distributions; convergences occurs 
since WL does not care about detailed structure in z.

• Full simulation under development will treat catastrophic 
errors, non-parametric (discrete) z distributions, inclusion 
of bispectrum, cross-correlations, intrinsic alignments, etc.
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(Near!) Future results

• Quantify the constrained distance-growth combinations 
from a WL + galaxy survey of given size and source 
density, coupled with spectro survey of given size.

• Can construct a figure of merit from this information, or 
project it onto any chosen model.

• Example: Albrecht & Bernstein, project DE proposals 
onto a DE model with arbitrary w function.

• Optimize suites of experiments, determine required 
photo-z calibration size and shear-systematic levels.

• Later: same code can analyse SKA lensing, recombination-
era or CMB lensing constraints, or any combination.
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Example: Albrecht’s EOS PCA metrics

1 2 3 4 5 6 7 8 9
0

1

2
Stage 2

!
i

0.2 0.4 0.6 0.8 1
!1

0
1

f’s
 

 

0.2 0.4 0.6 0.8 1
!1

0
1

f’s

 

 

0.2 0.4 0.6 0.8 1
!1

0

1

f’s

a

 

 

1
2
3

4
5
6

7
8
9

• Describe w(a) as a stepwise 
function.

• Express constraints as a 
series of eigenfunctions

• About 2 eigenfunctions 
constrained to <0.5 accuracy 
when current experiments 
are complete. 

• 5-7 useful constraints with 
future data

• A. Albrecht & GMB (2007), 
extension of Dark Energy Task 
Force work.

• In this view, space gain has 
larger numerical value.
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