Shapelets STEP3 and CFHTLS

Joel Bergé (CEA Saclay) With Alexandre Réfrégier (CEA), Richard Massey (Caltech), Florian Pacaud (CEA, Bonn), Marguerite Pierre (CEA) et al.

STEP workshop, 20/08/2007

Layout of the talk

- Overview : shapelets
- Updates since STEP2
- Shapelets on space-STEP
- Science with shapelets : CFHTLS

- Overview : shapelets
- Updates since STEP2
- Shapelets on space-STEP
- Science with shapelets : CFHTLS

What are shapelets ?

- Complete orthogonal basis functions
- Linear decomposition of localised objects
- 3 non-linear parameters : order of decomposition $n_{\rm max}$, scale β , centroid $x_{\rm c}$
- Capture all shape information of a localised object
- Simple and analytic form for (de)convolution and shear
- Adapted to galaxy shape modeling and cosmic shear
- We use two **equivalent** kinds of shapelets : *Cartesian* shapelets and *Polar* shapelets

Cartesian shapelets

Refregier 2003, Bacon & Refregier 2003

Gaussian-weighted Hermite polynomials

Shear estimation

Shapelets pipeline

Least-square fitting of an analytical model (pixellised and convolved with the PSF) to observed data.

Shapelets pipeline

Least-square fitting of an analytical model (pixellised and convolved with the PSF) to observed data.

PSF modelling

- Selection of useful stars
- 2-step shapelet modelling of stars
 - 1 : full focus (search for $n_{\rm max}$, β and centroid) on each star
 - -2: β fixed to the same value for each star
- Polynomial fitting of shapelet coefficients
- Full PSF shape information captured
 PSF eventually fully corrected for

PSF model

Difficulty : must account for all PSF shape, even wings

PSF characterization

Possibility to characterize spatial variations of PSF shape information

Coefficients f_{nm} Flux $F \equiv \int \int_{-\infty}^{\infty} f(\mathbf{x}) d^2 x = (4\pi)^{1/2} \beta \sum_{n=1}^{\infty} f_{n0}$ Size $R^2 = \frac{(16\pi)^{1/2}\beta^3}{F} \sum_{n=0}^{1} (n+1) f_{n0}$ Ellipticity, $\varepsilon = \frac{F_{11} - F_{22} + 2iF_{12}}{F_{11} + F_{22}} = \sum_{n=1}^{\text{even}} \varepsilon_n$ order by order $\varepsilon_n = \frac{(16\pi)^{1/2}\beta^3}{FP^2} [n(n+2)]^{1/2} f_{n2}$

PSF spatial variations CFHTLS/D1 T0003

PSF spatial variations CFHTLS/D1 T0003

- Overview : shapelets
- Updates since STEP2
- Shapelets on space-STEP
- Science with shapelets : CFHTLS

Shapelets in STEP2

Main concern : error bars

Pipeline updates

- Better decomposition success rate (70-80% => ~ 95%)
- Fit P_{γ} as a function of size and magnitude
- Use γ_2 shear estimator instead of estimator based on unweighted ellipticity
- Galaxy weighting scheme

$$w_{g} = (\sigma_{\varepsilon,g}^{2} + \sigma_{P_{\gamma},g}^{2} + \sigma_{int}^{2})^{-1}$$
Shape
Measurement error
$$P_{\gamma} \text{ measurement}$$

$$error$$

- Overview : shapelets
- Updates since STEP2
- Shapelets on space-STEP
- Science with shapelets : CFHTLS

Compared to others

Error bars

Courtesy Catherine Heymans, Stéphane Paulin-Henriksson, Jason Rhodes

Shapelets error bars slightly higher than considered methods' (~20%)

Non-optimal galaxy selection can explain bigger error bars in spite of our weighting scheme.

Pixel scale impact

Pixel scale impact

Comparison of shear galaxy by galaxy between PSF D and PSF E (same patch of sky, different θ)

What's happening ?

Stack residuals of similar galaxies

Wings better caught.

Wings not caught by shapelet model => model too circular => underestimated shear

 $n_{\rm max}$ doesn't increase enough for small pixel scales, unable to catch outer regions of galaxies

- Overview : shapelets
- Updates since STEP2
- Shapelets on space-STEP
- Science with shapelets : CFHTLS

CFHTLS/D1 shapelet κ map

Bergé et al. 2007

Weak lensing selection function

For clusters in D1 and its surrounding W1 area

Cluster counts

Press-Schechter approach => expected cluster counts

M-T relation

Conclusion

- Shapelets : fitting method aiming to be as linear as possible, well suited to weak lensing analysis
- Provide full characterization of an object's shape (in particular, PSF)
- STEP2 has allowed us to update and improve our pipeline
- Space-STEP has emphasized a pixel scale dependent modelling problem, we're working on it
- Shapelets have been successfully used on real CFHTLS data : we found galaxy groups, with a striking consistency with X-ray detections, and measured σ_8 and M-T relation slope and normalization.

Convergence of non-linear parameters

