

Relationships between Gas and Dust in Local Dusty Galaxies

Nathan Bourne, Loretta Dunne, George Bendo, Steve Maddox and the H-ATLAS team

N. Bourne et al.

How is sub-mm emission related to the ISM in galaxies?

- We know there are links between the dust and molecular & atomic gas phases in galaxies
- FIR emission is commonly used as an SFR indicator
- The SFR itself is related to the gas content
- Dust also linked to gas content via dust/gas ratio

N. Bourne et al.

How is sub-mm emission related to the ISM in galaxies?

Dust also exists in several "phases" of the ISM:

- Does Herschel detect dust heated by young stars?
- Does it trace the SFR?

- long-running debate e.g. Lonsdale Persson & Helou 1987; Walterbos & Greenawalt 1996;

- recent evidence - e.g. Bendo et al. 2011; Boquien et al. 2011; Totani et al. 2011; Boselli et al.2012; etc etc

Sample and observations

- 20 local (z<0.05) galaxies from H-ATLAS equatorial fields</p>
- 500µm flux-limited sample
- FIR data covering the peak of the SED
- Cold SEDs not bright IRAS sources, but (mostly) spirals whose gas and dust content have not been studied previously
- The dustiest galaxies in the local Universe

Need to test the correlation between sub-mm flux and CO tracers of the dense molecular gas

- CO observations at JCMT:
 - CO(3-2) on HARP
 - CO(2-1) on RxA
- Detecting total extended flux from CO in each of the galaxies
- Archival HI data from HIPASS

N. Bourne et al.

 Creti-tkszymank

500µm-selected galaxies

- Blue and dusty spirals; extended sources; generally isolated
- Also included the two brightest early-types in SDP from Rowlands et al. 2012.

N. Bourne et al.

500µm-selected galaxies

- Blue and dusty spirals; extended sources; generally isolated
- Also included the two brightest early-types in SDP from Rowlands et al. 2012.

N. Bourne et al.

CO Data

N. Bourne et al.

CO Data

N. Bourne et al.

CO Data

e.g. NGC 5713

N. Bourne et al.

e.g. NGC 5719

Sloan

CO(3-2) moment 1

65

52

39

26

13

0

-13

CO(3-2) moment 0

14:41:00.0 14:40:58.0 14:40:56.0 14:40:54.0 14:40:52.0

4:41:00.0 14:40:58.0 14:40:56.0 14:40:54.0 14:40:52.0

N. Bourne et al.

Looking for correlations in the results

- Total CO fluxes
 CO(3-2) → warm, dense H₂
 CO(2-1) → cooler, more diffuse H₂; total molecular mass
- HI from HIPASS → total atomic mass
- 22µm from WISE;
 60, 100µm from IRAS; → warm dust; total L_{IR}
 160µm from PACS
- 250, 350, 500 μ m from SPIRE \rightarrow cold dust; total dust mass

22-160µm (FIR)

Scatter in CO(3-2) - FIR correlation decreases with FIR wavelength

Reversed trend in HI

N. Bourne et al.

250-500µm (sub-mm)

- Scatter in CO(3-2) FIR correlation *increases* with wavelengths in the sub-mm
- Reversed trend in HI again

100µm traces dense gas; >250µm traces diffuse?

N. Bourne et al.

- CO(3-2) flux correlates best with 100µm; scatter increases in sub-mm
- HI fluxes correlate better with flux in sub-mm
- 22-60µm bucks the trend
- CO(2-1) less clear

Suggesting that:

- Global sub-mm fluxes (>250µm) trace total gas mass
- But they are a poor tracer of dense molecular gas that fuels star formation
- Does this mean the cold dust is heated by evolved stars instead of young ones?
- 22-60µm fluxes contaminated by VSGs?

Cold dust heating by evolved stars

- Consistent with results from FIR colours in galaxies...
 - HRS galaxies Boselli+2012
 - M33 Boquien+2011 (HERM33ES) and Komugi+2011
 - JCMT Nearby Galaxies Legacy Survey (NGLS) Bendo+2012
 - M31 Smith+2012 (HELGA), see also modelling by Groves+2012
- And recent results on the FIR CO relationship in other samples
 - Virgo cluster spirals Corbelli+2012 (HeVICS)
 - HI-selected galaxies in NGLS Wilson+2012
- But also possible that diffuse dust is heated by UV light escaping from birth clouds

The Schmidt Law

- Integrated FIR from warm dust traces SFR
- Correlated with dense CO tracer, consistent with normal star-forming galaxies

N. Bourne et al.

Dust/gas ratio and metallicity

- Dust mass correlated with L_{co} but sub-linear why?
- Underlying dependencies: dust/gas, CO/H2, metallicity, CO excitation

N. Bourne et al.

Conclusions

- Scatter in the correlation between dust and gas tracers varies as a function of FIR wavelength and emission line tracer, suggesting that:
 - CO(3-2), i.e. dense gas, is better correlated with FIR emission at the SED peak, 100µm
 - CO(2-1), tracing cooler diffuse gas, may be better correlated with 250-500µm, although more data are needed for confidence
 - HI is also better correlated with sub-mm
 - Poor correlation between CO(3-2) and sub-mm is consistent with cold dust being heated by old stellar population
 - 22-60µm fluxes buck the trends in the correlations with wavelength, and may contain a significant small-grain component, not correlated with SFR
- Relationships between CO, H₂, HI and dust masses are unclear due to dependence on metallicity, temperature and excitation, but CO luminosity may be well correlated with dust mass due to a combination of factors