A Survey of Dust in the Low Redshift Universe

Nathan Bourne with Loretta Dunne, Steve Maddox, Herschel-ATLAS, GAMA

- Introduction to the surveys
- Stacking methods
- Correcting for bias
- The Cosmic Infrared Background
- The Cosmic SED
- Evolution of Infrared Luminosities
- Characteristics of dust in optically selected galaxies
 temperature and mass
- Obscuration in galaxies
- The nature of red galaxies

- 550 deg² imaging at 100, 160, 250, 350, 500µm with PACS and SPIRE instruments
- Reaching an rms noise level close to the confusion limit
- Equatorial fields:
 - ~130 deg² H-ATLAS/GAMA overlap at 9^h, 12^h, 15^h
 - GAMA photometry in NUV, FUV, ugrizYJHK (Hill+11)
 - ~99.9% complete down to r=19.8 (Baldry+11)
 - Spectroscopic redshifts for 90% of sample down to r=19.8
 - Photometric redshifts otherwise
 - Stellar masses from ugriz (Taylor+11)

Stacking Methods

- Split sample into:
 - 3 colour bins (to isolate red sequence and blue cloud)

• 5 M_r bins / 5 M_{star} bins

• 6 <u>z</u> bins

Simultaneous stacking & deblending

- Normally would convolve the map with the PSF
- Each position in the convolved map then represents total flux of a point source
- But blending can lead to over-estimate of flux this way
- So we weight the PSF kernel to deblend fluxes

Sub-mm fluxes of optically selected galaxies

Could the fluxes by biased by lensing?

- We know that some galaxies can be aligned with background sources, and if the alignment is close enough then there will be strong lensing
- The foreground galaxy magnifies the flux from the background source and an image can appear close enough to the target position to boost the measured flux
- In general the foreground lenses must...
 - i. be intrinsically faint in comparison to the lensed source
 - ii. have a gravitating mass profile that provides a strong magnification factor (e.g. spheroids)

Estimating the lensing contamination to red galaxies

Estimating the lensing contamination to red galaxies

Estimating the lensing contamination to red galaxies

- Integrate the source counts of strong lenses (Lapi+11) to obtain total lensed flux by square degree
- Use HALOS redshift distribution to estimate how much of this flux is lensed by low redshift galaxies (z<0.35)
- Compare to measured flux from red galaxies

	Total surface brightness (Jy deg^{-2})				
	$250\mu{ m m}$	$350\mu{ m m}$	$500\mu{ m m}$		
All lensed flux	1.09	1.34	1.22		
Lenses at $z < 0.35$ 3- σ upper limit	$0.23\substack{+0.09\\-0.06}$ (0.50)	$\substack{0.28\substack{+0.12\\-0.07}\\(0.62)}$	$\begin{array}{c} 0.26\substack{+0.11\\-0.07}\\(0.56)\end{array}$		
Red galaxies	2.6 ± 0.5	1.6 ± 0.2	0.8 ± 0.1		
Fraction 3- σ upper limit	$0.09^{+0.04}_{-0.03}$ (0.19)	$0.18^{+0.08}_{-0.05}$ (0.39)	$\begin{array}{c} 0.32^{+0.14}_{-0.09} \\ (0.68) \end{array}$		

Original results

Lensing-subtracted Results

The Cosmic Infrared Background

- Total stacked intensity, completeness-corrected, of all r<19.8 galaxies up to z=0.35
- Contribution to the CIB:

		$250\mu{ m m}$	$350\mu\mathrm{m}$	$500\mu{ m m}$
			% of CIB	
	Total Stack	5.27 ± 0.42	3.89 ± 0.32	2.94 ± 0.23
Complete to M _r * =-21.4	0.01 < z < 0.28	4.42 ± 0.36	3.20 ± 0.27	2.42 ± 0.20
	0.01 < z < 0.12	1.64 ± 0.18	1.12 ± 0.14	0.81 ± 0.09
	0.12 < z < 0.17	1.03 ± 0.11	0.74 ± 0.08	0.55 ± 0.06
	0.17 < z < 0.22	0.90 ± 0.09	0.67 ± 0.08	0.52 ± 0.05
	0.22 < z < 0.28	0.86 ± 0.09	0.68 ± 0.08	0.54 ± 0.06
,	0.28 < z < 0.35	0.85 ± 0.08	0.68 ± 0.08	0.52 ± 0.05
60% = blue cloud	Blue	3.21 ± 0.28	2.36 ± 0.22	1.78 ± 0.16
20% = green valley	Green	1.19 ± 0.10	0.88 ± 0.08	0.68 ± 0.06
20% = red galaxies	Red	0.87 ± 0.10	0.65 ± 0.08	0.47 ± 0.05

The Cosmic SED

 Predictions vs. observations of the total luminosity density of the universe at z=0

Evolution of Infrared Luminosities of normal galaxies

 $250\mu m$ luminosities at a given M_{star}

- blue $\sim (1+z)^{3.9}$
- green ~(1+z)^{1.1}
- red ~(1+z)^{~10}

Total IR luminosities dependent on template but evolution consistent:

- Blue $\sim (1+z)^{3.9}$
- green ~(1+z)^{1.6}
- red ~(1+z)~⁹

Agrees with Oliver+10; and Magnelli+09, Damen+09, Dunne+09, Pannella+09, Karim+11, etc etc (radio and FIR luminosity evolution)

Evolution of the FIR/sub-mm LF

SED Fitting

 Fit greybody SEDs to the three stacked fluxes in each bin (250, 350, 500 µm points)

• $S_{\nu} \sim \nu^{\beta} B(\nu,T)$

- Must assume constant β but then can constrain temperatures
- Significant difference between dust temperatures of red and blue galaxies
- Blue galaxies show correlation with mass
- Doesn't appear to be due to lensing (at 2.4σ level)
- Robust to contamination of 500µm band by additional confusion or extended flux

Dust Temperatures

Dust Temperatures

Dust Masses

 $M_{\rm dust} = \frac{S_{250} D_{\rm L}^2 K(z)}{\kappa_{250} B(\nu_{250}, T_{\rm dust}) (1+z)}$

- M_{dust} dependent on T
- L dependence partly due to T, partly due to M

- *M* responsible for evolution with *z*
- Hence evolution of DMF
- T (& M?) responsible for colour dependence

Dust Masses

- M_{dust}/M_{star} strongly anticorrelated with M_{star}
- For dust to remain in ISM, 'dwarfs' must be less efficient at turning gas into stars...
- and high dust masses in dwarfs imply dust must be produced in SNe and probably in the ISM (unless a top-heavy IMF) – H.Gomez+ (in prep)

- Dust masses of red and blue galaxies typically differ by factors 2-3, according to these results – could be a little more if lensing is stronger effect, but we tried to be conservative in estimating that.
- Red galaxies also appear to have colder dust than blue
- Contrast with literature data on spiral versus elliptical samples: ellipticals have at least an order of magnitude less dust than spirals, but similar dust temperatures (e.g. HRS – M. Smith+11 subm.;
- Also Rowlands+11: median dust mass of Herschelundetected ellipticals much lower than our red sample
- M and T results are not independent, so must take care
- HRS (Smith+11) also found environmental dependence

Obscuration of Star Formation

- Luminous red galaxies have increasing levels of obscuration as go to higher z and lower luminosity/mass
- This probably also applies to blue galaxies

Conclusions

- Stacking optically-selected galaxies we can recover the predicted total luminosity density of the Universe (Cosmic SED) at z=0
- Low redshift galaxies only account for about 5% of the 250 μ m CIB at z<~0.3 most extragalactic sub-mm light comes from high redshifts
- Stacked fluxes of red galaxies can be significantly contaminated by lensing (~10% at 250µm; ~30% at 500µm) – but we can correct for this
- Blue galaxies are up to 10x more luminous in the sub-mm than red galaxies, probably due to higher dust temperatures which may result from higher SFRs
- Red and blue galaxies show different relationships between dust luminosity and stellar luminosity due to warmer dust in massive blue g's
- Red galaxies have colder dust and probably less dust mass but not by a lot – in contrast with recent results for elliptical galaxies
- High dust/stellar mass ratios in low-mass galaxies imply dust must form in SNe and probably in the ISM
- Red (and blue?) galaxies are more obscured at higher z and lower M

A sample of "normal" galaxies at low redshift

 What do I mean by normal and why (historically much of our understanding of dust in galaxies has been based on IR luminous samples)