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Suggested references:

Textbooks on probability and statistics are notoriously: (a) boring (b) irrelevant to
astronomers and physicists (c) from one viewpoint and ignore others (d) all of the above.
Given this the main text for this course is these notes. However if you’re after more, two
text that do much better than the norm are:

• Robert Lupton, Statistics in Theory and Practice, Princeton University Press;
ISBN: 0691074291, Price: 29.95 (from Amazon). This is a great textbook, very
much in the vein of this course. Good intro.

• William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling,
Numerical Recipes in FORTRAN Example Book: The Art of Scientific Computing,
Cambridge University Press; ISBN: 0521437210, Price: 22.95 (from Amazon). This
covers much more than statistics, and provides computer code for all its methods.
There is a C and C++ version if you’re not into Fortran. Apart from actual code,
its strength is in clear explanations of scientific methods, in particular Statistical
Methods.
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PART ONE

1 PROBABILITY AND STATISTICS

1.1 Introduction

Science, and in particular Modern Astronomy and Astrophysics, is impossible without
knowledge of probability and statistics. To see this let’s consider how Scientific Knowl-
edge evolves1. First of all we start with a problem, e.g., a new observation, or something
unexplained in an existing theory. In the case of a new observation, probability and statis-
tics are already required to make sure we are have detected something at all. We then
conjecture (or rather we simply make up) a set of solutions, or theories, explaining the
problem. Hopefully these theories can be used to deduce testable predictions (or they
are not much use), so that they can be experimentally tested. The predictions can be
of a statistical nature, i.e., the mean value of a property of a population of objects or
events. We then need probability and statistics to help us decide which theories pass the
test and which do not. Even in everyday situations we have to make such decisions, when
we do not have complete certainty. If we are sure a theory has failed the test it can be
disregarded, and if it passes it lives to fight another day. We cannot “prove” a theory
true, since we don’t know if it will fail a critical test tomorrow.

In all of this probability and statistics are vital for:

• Detection of signals:
How do we know if we’ve found a new object or detected a new signal?
e.g. detection of astronomical objects, detection of spectral features, detection of fluctu-

ations in temperature or polarisation in the microwave background, detection of galaxy

clustering.

• Detection of correlations:
A correlation between two quantities may imply a physical connection. But how do
we detect any such correlation? And when should we believe its real?
e.g. Hubble diagram, the Hertsprung-Russell diagram, galaxy colour-magnitude relations.

• Tests of hypotheses:
How do we rule out a false theory? Or pass another ?
e.g. isotropy of the Universe, physical association between astronomical objects, the exis-

tence and nature of dark matter and dark energy in the Universe.

• Model-fitting to data and interpretation:
How should we compare our models with data?
e.g. compare a cosmological theory with the cosmic microwave background or galaxy

redshift survey, or compare a stellar model with the observed solar neutrino flux.

• Estimation of parameters:
If a model does fit the data, how do we extract estimates of the model parameters
that best fit the data?

1from the Theory of Knowledge, by Karl Popper in Conjecture and Refutations, 1963.
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e.g. the mean mass density of the Universe, the temperature, surface gravity, metallicity

of stars, number and mass of neutrinos.

• As a theoretical tool:
How do we model or predict the properties of populations of objects, or study
complex systems?
e.g. Statistical properties of galaxy populations, or stars, simulations of stellar clusters or

large-scale structure, turbulence in the IGM.

In astronomy the need for statistical methods is especially acute, as we cannot directly
interact with the objects we observe. For instance, we can’t re-run the same supernova
over and again, from different angles and with different initial conditions, to see what
happens. Instead we have to assume that by observing a large number of such events, we
can collect a “fair sample”, and draw conclusions about the physics of supernovae from
this sample. Without this assumption, that we can indeed collect fair samples, it would
be questionable if astronomy is really a science. This is also an issue for other subjects,
such as archeology or forensics. As a result of this strong dependence on probabilistic
and statistical arguments, many astronomers have contributed to the development of
probability and statistics.

As a result, there are strong links between the statistical methods used in astronomy
and those used in many other areas. These include particularly any science that makes
use of signals (e.g. speech processing) or images (e.g. medical physics) or of statistical
data samples (e.g. psychology). And in the real world, of course, statistical analysis is
used for a wide range of purposes from forensics, risk assessment, economics and, its first
use, in gambling.

1.2 What is a probability ?

The question “what is a probability?” is actually a very tricky one. Surprisingly there
isn’t a universally agreed definition. The answer to the question “What is a probability?”
depends on how you assign probabilities in the first place. To understand the origins of
this problem let’s take a quick look at the historical development of probability:

1654: Blaise Pascal & Pierre Fermat: After being asked by an aristocratic professional
gambler how the stakes should be divided between players in a game of chance if
they quit before the game ends, Pascal (he of the triangle) and Fermat (of ‘Last
Theorem’ fame) began a correspondence on how to make decisions in situations in
which it is not possible to argue with certainty, in particular for gambling probabil-
ities. Together, in a series of letters in 1654, they laid down the basic Calculus of
Probabilities (See Section 1.3).

1713: James (Jacob) Bernoulli: Bernoulli was the first to wonder how does one assign
a probability. He developed the “Principle of Insufficient Reason”: if there are
N events, and no other information, one should assign each event the probability
P = 1/N . But he then couldn’t see how one should update a probability after an
event has happened.
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1763: Thomas Bayes: Edinburgh, 1763, and the Rev. Thomas Bayes solved Bernoulli’s
problem of how to update the probability of an event (or hypothesis) given new
information. The formula that does this is now called “Bayes’ Theorem” (see
Section 2.3).

1795: Johann Friederich Carl Gauss: At the age of 18, the mathematical astronomer,
Gauss, invented the method of ‘Least Squares’ (section 2.1), derived the Gaussian
distribution of errors (section 1.6), and formulated the Central Limit Theorem (sec-
tion 1.9).

1820: Pierre-Simon de Laplace: Another mathematical astronomer, Laplace re-discovered
Bayes’ Theorem and applied it to Celestial Mechanics and Medical Statistics. Marked
a return to earlier ideas that “probability” is a lack of information

1850’s: The Frequentists: Mathematicians rejected Laplace’s developments and try to
remove subjectivity from the definition of probability. A probability is a measured
frequency. To deal with everyday problems they invent Statistics. Notable amongst
these are Boole (1854), Venn (of Diagram fame) (1888), Fisher (1932) and von Mises
(1957).

1920’s: The Bayesians: We see a return to the more intuitive ideas of Bayes and Laplace
with the “Neo-Bayesian”. A probability is related to the amount of information
we have to hand. This began with John Maynard Keynes (1921), and continued
with Jeffreys (1939), Cox (1946) and Steve Gull (1980).

1989: E. Jaynes: Using Bayesian ideas Jaynes tries to solve the problem of assigning
probability with the “Principle of Maximum Entropy” (section 2.4).

So what is a probability ? There are two basic philosophies about what a probability
is, based on how the probabilities are assigned:

• Frequentist (or Classical) probabilities: Probabilities are measureable frequen-
cies, assigned to objects or events. In some situations, e.g., for single events, or in
situations were we cannot in practice measure the frequency, we have to invent a
hypothetical ensemble of events.

• Bayesian probabilities: Probability is a “degree-of-belief” of the outcome of an
event, allocated by an observer given the available evidence. While this is more
intuitive it can lead to problems with subjectivity. But if all observers have the same
evidence and allocate the same probability, Bayesians would argue it is objective.

These do not obviously give the same answer to problems in probability and statistic,
as they assign different probabilities to some events. However, in many instances they
are the same, and both agree on the basics of probability theory (see next section). In
this course we shall mostly work in the Frequentist framework, since the majority of
probability and statistics has been formulated this way. This should provide a “toolbox”
of practical methods to solve everyday problems in physics and astronomy. However, we
shall encounter situations where we are forced to consider the Bayesian approach, and its
deep implications.
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1.3 The calculus of probability

The Calculus of Probabilities is the mathematical theory which allows us to predict
the statistical behaviour of complex systems from a basic set of fundamental axioms.
Probabilities come in two distinct forms: discrete, where Pi is the probability of the ith

event occurring, and continuous, where P (x) is the probability that the even, or random
variable, x, occurs.

1. The Range of Probabilities: The probability of an event is measurable on a
continuous scale, such that P (x) is a real number in the range 0 ≤ P (x) ≤ 1.

2. The Sum Rule: The sum of all discrete possibilities is
∑

i

Pi = 1. (1)

For a continuous range of random variables, x, this becomes
∫ ∞

−∞
dx p(x) = 1, (2)

where p(x) is the probability density. The probability density clearly must have
units of 1/x.

3. The Addition of Exclusive Probabilities: If the probabilities of n mutually
exclusive events, x1, x2 · · · xn are P (x1), P (x2) · · ·P (xn), then the probability that
either x1 or x2 or · · · xn occurs is2

P (x1 + x2 + · · · + xn) = P (x1) + P (x2) + · · · + P (xn) (3)

4. The Multiplication of Probabilities: The probability of two events x and y
both occurring is the product of the probability of x occurring and the probability
of y occurring given that x has occurred. In notational form:

P (x, y) = P (x|y)P (y)

= P (y|x)P (x) (4)

where we have introduced the conditional probability, P (x|y), which denotes
the probability the of x given the event y has occurred. If x and y are independent
events then

P (x, y) = P (x)P (y). (5)

Problem 1.1
Three coins are tossed. What is the probability that they fall either all heads or all tails?
(Assume P (heads) = P (tail) = 1/2). Try some of these suggested answers:

1. There are 8 possible equally probable combinations (HHH, HHT, HTH,......). Two
of these give us either all heads or all tails, so the probability is 1/4.

2
Maths Notes: The logical proposition “A.OR.B” can be written as A + B, or in set theory,

A
⋃

B,which is the union of the set of events A and B. Similarly “A.AND.B” can be written as AB or
A
⋂

B, which is the intersection of events.
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2. There are 2 possibilities: either all 3 coins fall alike, or 2 fall alike and 1 is different.
Hence the probability is 1/2.

3. There are 4 possibilities: 3 heads, 2 heads and 1 tail, 2 tails and 1 head, 3 tails.
Hence the probability is 2/4 = 1/2.

4. Of the 3 coins, 2 must fall alike. The other must either be the same as these or
different, so probability is 1/2. Which of these arguments are wrong, and why?

1.4 Moments of the distribution

Probability distributions can be characterized by their moments.

Definition:
mn ≡ 〈xn〉 =

∫ ∞

−∞
dx xnp(x), (6)

is the nth moment of a distribution. The angled brackets 〈· · ·〉 denote the expectation
value. Probability distributions are normalized so that

m0 =
∫ ∞

−∞
dx p(x) = 1 (7)

(Axiom 2, The Sum Rule).

The first moment,
m1 = 〈x〉, (8)

gives the expectation value of x, called the mean: the average or typical expected value
of the random variable x if we make random drawings from the probability distribution.

Centred moments are obtained by shifting the origin of x to the mean;

µn ≡ 〈(x − 〈x〉)n〉. (9)

The second centred moment,

µ2 = 〈(x − 〈x〉)2〉, (10)

is a measure of the spread of the distribution about the mean. This is such an important
quantity it is often called the variance, and denoted

σ2 ≡ µ2. (11)

We will need the following, useful result later:

σ2 = 〈(x − 〈x〉)2〉 = 〈(x2 − 2x〈x〉 + 〈x〉2)〉 = 〈x2〉 − 〈x〉2. (12)

The variance is obtained from the mean of the square minus the square of the mean. An-
other commonly defined quantity is the square-root of the variance, called the standard
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deviation; σ. This quantity is sometimes also called the root mean squared (rms)
deviation3, or error4.

Higher moments characterise the distribution further, with odd moments characteris-
ing asymmetry. In particular the third moment, called the skewness, 〈x3〉, characterises
the simplest asymmetry, while the fourth moment, the kurtosis, 〈x4〉, characterises the
flatness of the distribution. Rarely will one go beyond these moments.

For bivariate distributions (of two random variables), p(x, y), one can also define a
covariance (assume 〈x〉 = 〈y〉 = 0);

Cov(x, y) = 〈xy〉 =
∫ ∞

−∞
dx dy xy p(x, y) (13)

and a dimensionless correlation coefficient;

r =
〈xy〉

√

〈x2〉〈y2〉
, (14)

which quantifies the similarity between two variables. r must lies between +1 (completely
correlated) and −1 (completely anti-correlated). r = 0 indicates the variables are uncor-
related (but not necessarily independent). We shall meet the correlation coefficient later
when we try and estimate if two data sets are related.

1.5 Discrete probability distributions

We can use the calculus of probabilities to produce a mathematical expression for the
probability of a wide range of multiple events such as discussed in Example 1.

1.5.1 Binomial Distribution

The Binomial distribution allows us to calculate the probability, Pn, of n suc-
cesses arising after N independent trials.

Suppose we have a sample of objects of which a probability, p1, of have some attribute
(such as a coin being heads-up) and a probability, p2 = 1−p1 of not having this attribute
(e.g. tails-up). Suppose we sample these objects twice, e.g. toss a coin 2 times, or toss 2
coins at once. The possible out comes are hh, ht, th, and tt. As these are independent
events we see that the probability of each distinguishable outcome is

P (hh) = P (h)P (h),

P (ht + th) = P (ht) + P (th) = 2P (h)P (t),

P (tt) = P (t)P (t). (15)

3One should be cautious, as the term rms need not apply to deviations from the mean. It sometimes
applies to

√
m2. One should be explicit that it is a rms deviation, unless the mean is known to be zero.

4Again one should be cautions about referring to σ as the error. ‘Error’, or ‘uncertainty’ implies the
distribution has a Gaussian form (see later), which in general is untrue.
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These combinations are simply the coefficients of the binomial expansion of the quan-
tity (P (h) + P (t))2. In general, if we draw N objects, then the number of possible
permutations which can result in n of them having some attribute is the nth coefficient in
the expansion of (p1 + p2)

N , the probability of each of these permutations is pn
1p

N−n
2 , and

the probability of n objects having some attribute is the binomial expansion

Pn = CN
n pn

1p
N−n
2 , (0 ≤ n ≤ N), (16)

where

CN
n =

N !

n!(N − n)!
(17)

are the Binomial coefficients. The binomial coefficients can here be viewed as statistical
weights which allow for the number of possible indistinguishable permutations which lead
to the same outcome. This distribution is called the general Binomial, or Bernoulli
distribution. We can plot out the values of Pn for all the possible n (Figure 1) and in

Figure 1: Histogram of a binomial distribution

doing so have generated the predicted probability distribution which in this case is the
binomial distribution whose form is determined by N , n, p1. If we have only two possible
outcomes p2 = 1 − p1. The Binomial distribution can be generalised to a multinomial
distribution function.

The mean of the binomial distribution is

〈n〉 =
N
∑

n=0

nP

=
N
∑

n=0

n
N !

n!(N − n)!
pn

1p
N−n
2

=
N
∑

n=1

N !

(n − 1)!(N − n)!
pn

1p
N−n
2

=
N
∑

n=1

N(N − 1)!

(n − 1)!(N − n)!
p1p

n−1
1 pN−n

2

= Np1 (18)
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For p1 6= p2 the distribution is asymmetric, with mean 〈n〉 = Np1, but if is large the
shape of the envelope around the maximum looks more and more symmetrical and tends
towards a Gaussian distribution - an example of the Central Limit Theorem at work.
More of this later!

1.5.2 The Poisson distribution

The Poisson distribution occupies a special place in probability and statistics, and
hence in observational astronomy. It is the archetypical distribution for point processes.
It is of particular importance in the detection of astronomical objects since it describes
photon noise. It essentially models the distribution of randomly distributed, indepen-
dent, point-like events, and is commonly taken as the null hypothesis.

It can be derived as a limiting form of the binomial distribution:

The probability of n “successes” of an event of probability p is

Pn = CN
n pn(1 − p)N−n (19)

after N trials.

Let us suppose that the probability p is very small, but that in our experiment we
allow N to become large, while keeping the mean finite, so that we have a reasonable
chance of finding a finite number of successes n. That is we define λ = 〈n〉 = Np and let
p → 0, N → ∞, while λ =constant. Then,

Pn =
N !

n!(N − n)!

(

λ

N

)n (

1 − λ

N

)N−n

(20)

Using Stirling’s approximation, where x! →
√

2πe−xxx+1/2 when x → ∞, and letting
N → ∞, we find5

N !

(N − n)!
=

√
2πe−NNN+1/2

√
2πe−(N−n)(N − n)N−n+1/2

=
e−nNN+1/2

NN−n+1/2(1 − n/N)N−n+1/2

= e−nNnen

= Nn (22)

and
(

1 − λ

N

)N−n

= e−λ. (23)

5
Maths Note The limit of terms like (1 − x/N)N when N → ∞ can be found by taking the natural

log and expanding to first order:

N ln(1 − x/N) → N(−x/N) = −x (21)
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Combining these results with equation (20) we find

Pn =
λne−λ

n!
(24)

This is Poisson’s distribution for random point processes, discovered by him in
1837.

1.5.3 Moments of the Poisson distribution:

Let’s look at the moments of the Poisson distribution:

mi = 〈ni〉 =
∞
∑

n=0

niPn (25)

The mean of Poisson’s distribution is

〈n〉 =
∞
∑

n=0

n
λne−λ

n!

=
∞
∑

n=1

λne−λ

(n − 1)!

=
∞
∑

n=1

λλn−1e−λ

(n − 1)!

= λ (26)

i.e. the expectation value of Poisson’s distribution is the factor λ. This makes sense since
λ was defined as the mean of the underlying Binomial distribution, and kept constant
when we took the limit. Now lets look at the second centred moment (i.e. the variance):

µ2 =
∞
∑

n=0

(n − 〈n〉)2λne−λ

n!

=
∞
∑

n=0

n2 λne−λ

n!
− λ2

=
∞
∑

n=1

nλne−λ

(n − 1)!
− λ2

=
∞
∑

n=1

nλλn−1e−λ

(n − 1)!
− λ2

=
∞
∑

n=0

(n + 1)λλne−λ

n!
− λ2

= (λ + 1)λ − λ2

= λ. (27)

So the variance of Poisson’s distribution is also λ. This means that the variance of
the Poisson distribution is equal to its mean. This is a very useful result.
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1.5.4 A rule of thumb

Lets see how useful this result is. When counting photons, if the expected number detected
is n, the variance of the detected number is n: i.e. we expect typically to detect

n ±
√

n (28)

photons. Hence, just by detecting n counts, we can immediately say that the uncertainty
on that measurement is ±√

n, without knowing anything else about the problem, and
only assuming the counts are random. This is a very useful result, but beware: when
stating an uncertainty like this we are assuming the underlying distribution is Gaussian
(see later). Only for large n does the Poisson distribution look Gaussian (the Central
Limit Theorem at work again), and we can assume the uncertainty σ =

√
n.

1.5.5 Detection of a Source

A star produces a large number, N � 1, of photons during its life. If we observe it with a
telescope on Earth we can only intercept a tiny fraction, p � 1, of the photons which are
emitted in all directions by the star, and if we collect those photons for a few minutes or
hours we will collect only a tiny fraction of those emitted throughout the life of the star.

So if the star emits N photons in total and we collect a fraction, p, of those, then

λ = Np

N → ∞
p → 0. (29)

So if we make many identical observations of the star and plot out the frequency dis-
tribution of the numbers of photons collected each time, we expect to see a Poisson
distribution.

Conversely, if we make one observation and detect n photons, we can use the Poisson
distribution to derive the probability of all the possible values of λ: we can set confidence
limits on the value of λ from this observation. And if we can show that one piece of
sky has only a small probability of having a value of λ as low as the surrounding sky,
then we can say that we have detected a star, quasar, galaxy or whatever at a particular
significance level (i.e. at a given probability that we have made a mistake due to the
random fluctuations in the arrival rate of photons). A useful rule of thumb here is

λS ≥ λB + ν
√

λB (30)

where λS is the mean counts from the source, λB, is the mean background count, and ν
is the detection level. Usually we take ν = 3 to be a detection, but sometimes it can be
ν = 5 or even ν = 15 for high confidence in a detection.

1.5.6 Testing the Isotropy of the Universe

A key observation in cosmology is that the universe appears isotropic on large scales.
Unless our galaxy occupies an extremely special place in the universe, then isotropy
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implies homogeneity. Without this information a wide range of different cosmological
models become possible, and homogeneity pins down the type of universe we inhabit and
the manner in which it evolves.

But how do we test for isotropy? Let us suppose that we count a large number of
quasars in many different parts of the sky to obtain an average surface density of quasars,
per square degree. Dr. Anne Isotropy6 is investigating quasar counts in one area of sky
and finds an unusually large number of quasars, n in her area of one square degree. Does
this indicate anisotropy or is it a random fluctuation?

The probability of finding exactly n quasars is

Pn =
λne−λ

n!
. (31)

But being an astronomer of integrity, she admits that she would have been equally excited
if she had found any number greater than the observed number n. So the probability of
obtaining N quasars or greater is

P (≥ N) =
∞
∑

n=N

λne−λ

n!
. (32)

If λ = 2 and N = 5, PN = 0.036 but P (N ≥ 5) ≈ 0.053; i.e. there is only a 5% chance of
such a fluctuation occurring at random.

But nobody believes her result is significant, because it turns out that she had searched
through 20 such fields before finding her result, and we should expect one out of those
20 to show such a fluctuation. The more she looks for anisotropy, the more stringent her
criteria have to be!

P (≥ N) has a particularly simple form if N = 1:

P (≥ 1) =
∞
∑

n=1

λne−λ

n!

= 1 − e−λ. (33)

Hence for λ � 1, P (n ≥ 1) → λ. The function P (≥ N) is called the cumulative
probability distribution.

1.5.7 Identifying Sources

Suppose we are trying to find the optical counterpart to a known X-ray source, whose
position is known to some finite accuracy: we say that we know the size of the X-ray error
box (usually this will be a circle!). We attempt to do this by looking within that error
box on an optical image of the same region of sky. We know from counting the number
of stars etc. on that image the number of chance coincidences that we expect within the
error box, λ, and we can use this information to decide whether or not the existence of
an optical object close to the X-ray source is evidence that the two are related. If λ = 1

6Sorry...
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then the probability of finding one or more chance coincidences is 63 percent: this tells
us that if we want to rely on this information alone we cannot expect our identification
to be very reliable in this example.

1.6 Continuous probability distributions

So far we have dealt with discrete probability distributions (e.g. number of heads, number
of photons, number of quasars). But in other problems we wish to know the probability
distribution of a quantity which is continuously variable (e.g. the angle θ between two
directions can have any real value between 0 and 360). We can define a function θ such
that the probability that the quantity θ has values between θ − dθ/2 and θ + dθ/2 is
P (θ)|dθ|, and the probability that has any value larger than is

p(θ ≥ θ1) =
∫ 2π

θ1

dθ p(θ) (34)

The quantity θ is known as a random variable and is used to denote any possible values
which a quantity can have. Here p(θ) called the probability density. If its argument
has dimensions, the probability density will be measured in units of inverse dimensions.
p(θ ≥ θ1) is again called the cumulative probability distribution, and is dimensionless.

1.6.1 The Gaussian Distribution

A limiting form of the Poisson distribution (and most others - see the Central Limit
Theorem below) is the Gaussian distribution. Let’s write the Poisson distribution as

Pn =
λne−λ

n!
(35)

Now let x = n = λ(1 + δ) where λ � 1 and δ � 1. Using Stirlings formula for n! we
find7

p(x) =
λλ(1+δ)e−λ

√
2πe−λ(1+δ)[λ(1 + δ)]λ(1+δ)+1/2

=
eλδ(1 + δ)−λ(1+δ)

√
2πλ

=
e−λδ2/2

√
2πλ

(37)

Substituting back for x yields

p(x) =
e−(x−λ)2/(2λ)

√
2πλ

(38)

7
Maths Notes: The limit of a function like (1 + δ)λ(1+δ) with λ � 1 and δ � 1 can be found by

taking the natural log, then expanding in δ to second order (first order will cancel later):

−λ(1 + δ) ln(1 + δ) = −λ(1 + δ)(δ − δ2/2) = −λδ(1 + δ/2). (36)
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This is a Gaussian, or Normal8, distribution with mean and variance of λ. The Gaussian
distribution is the most important distribution in probability, due to its role in the Central
Limit Theorem. It is also one of the simplest.

1.6.2 Transformation of random variables

The probability that a random variable x has values in the range x − dx/2 to x + dx/2
is just p(x)dx. Remember p(x) is the probability density. We wish to transform the
probability distribution p(x) to the probability distribution g(y), where y is a function of
x. For a continuous function we can write,

p(x)dx = g(y)dy. (39)

This just states that probability is a conserved quantity, neither created nor destroyed.
Hence

p(x) = g(y(x))

∣

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

∣

. (40)

So the transformation of probabilities is just the same as the transformation of normal
functions in calculus. This was not necessarily obvious, since a probability is a special
function of random variables. This transformation is of great importance in astronomical
statistics. For example it allows us to transform between distributions and variables that
are useful for theory, and those that are observed.

1.6.3 An example: projection of a random pencil

Drop a pencil of length L with random orientation onto a table. What is the probability
distribution of the apparent length x if we sight along the top of the table?

Figure 2: A randomly orientated pencil.

8The name “Normal” was given to this distribution by the statistician K. Pearson, who almost imme-
diately regretted introducing the name. It is also sometimes called the Bell-curve.
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For random orientations p(θ) = 1/2π (uniform probability in θ).

So

p(x) = p(θ)

∣

∣

∣

∣

∣

dθ

dx

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∣

1

L cos θ(x)

∣

∣

∣

∣

∣

(−π ≤ θ < π)

=
1

2π

4

L cos θ(x)
(0 ≤ θ < π/2) (41)

since there are four angles, ±θ and ±(π − θ), which give the same value of x.

Finally, writing cos θ as a function of x;

cos θ(x) =

√

1 − x2

L2
(0 ≤ θ < π/2) (42)

we find

p(x) =
2

π
√

L2 − x2
. (43)

Note:

1. Take care with limits and multiple values,

2. Normalisation,
∫

dxf(x) = 1.

1.6.4 The predicted distribution of superluminal velocities in quasars.

Some radio sources appear to be expanding faster than the speed of light. This is thought
to occur if a radio-emitting component in the quasar jet travels almost directly towards
the observer at a speed close to that of light. The effect was predicted by the Astronomer
Royal Sir Martin Rees in 1966 (when he was an undergrad), and first observed in 1971.

Figure 3: Superluminal motion from a quasar nucleus.

Suppose the angle to the line of sight is θ as shown above, and that a component is
ejected along the jet from the nucleus. After some time t the ejection component has
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travelled a distance d|| = tv cos θ along the line of sight. But light emitted from the
nucleus is delayed by the extra travel time ∆t = t−d||/c = t(1− (v/c) cos θ). In that time
the component appears to have moved a distance d⊥ = tv sin θ across the line of sight,
and hence the apparent transverse velocity of the component is

v′ =
d⊥

∆t
=

v sin θ

1 − (v/c) cos θ
. (44)

Note that although a v/c term appears in this expression, the effect is not a relativistic
effect. It is just due to light delay and the viewing geometry. Writing

β = v/c, γ = (1 − β2)−1/2 (45)

we find that the apparent transverse speed β ′ has a maximum value when

∂β′

∂θ
=

β(β − cos θ)

(1 − β cos θ)2
= 0, (46)

when cos θ = β. Since sin θ = 1/γ we find a maximum value of β ′ = γβ, where γ can be
much greater than unity.

Given a randomly oriented sample of radio sources, what is the expected
distribution of β ′ if β is fixed?

First, note that θ is the angle to the line of sight, and since the orientation is random
in three dimensions (ie uniform distribution over the area dA = sin θ dθdφ),

p(θ) = sin θ 0 ≤ θ ≤ π/2. (47)

Hence,

p(β ′) = p(θ)

∣

∣

∣

∣

∣

dθ

dβ

∣

∣

∣

∣

∣

=
sin θ(1 − β cos θ)2

|β cos θ − β2| (48)

where sin θ and cos θ are given by the equation for β ′. We have chosen the limits 0 ≤ θ ≤
π/2 because in the standard model blobs are ejected from the nucleus along a jet in two
opposite directions, so we should always see one blob which is travelling towards us. The
limits in β ′ are 0 ≤ β ′ ≤ γβ. The expression for p(β ′) in terms of β ′ alone is rather messy,
but simplifies for β → 1:

β′ =
sin θ

(1 − cos θ)
(49)

p(β ′) = sin θ(1 − cos θ). (50)

Squaring both sides of sin θ = β ′(1 − cos θ), using sin2 θ = (1 − cos θ)(1 + cos θ) and
rearranging gives us (1 − cos θ) = 2/(1 + β ′2). Substituting this and sin θ = β ′(1 − cos θ)
into equation (50) finally gives us

p(β ′) =
4β′

(1 + β ′2)2
β′ ≥ 1. (51)
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The cumulative probability for β ′ is

P (> β ′) =
2

(1 + β ′2)
β′ ≥ 1. (52)

so the probability of observing a large apparent velocity, say β ′ > 5, is P (β ′ > 5) ≈ 1/13.

In fact, a much larger fraction of powerful radio quasars show superluminal motions,
and it now seems likely that the quasars jets cannot be randomly oriented: There must
be effects operating which tend to favour the selection of quasars jets pointing towards
us, most probably due to an opaque disc shrouding the nucleus.

1.7 The addition of random variables

1.7.1 Multivariate distributions and marginalisation

We can define the joint probability distribution function for two random variables x and
y as p(x, y) which is an extension of the single-variable case. Joint distributions for many
random variables are known as multivariate distributions.

Univariate distributions for each of x or y can be obtained by integrating, or marginal-
ising p(x, y) with respect to the other variable:

p(x) =
∫

dy p(x, y)

p(y) =
∫

dx p(x, y). (53)

Such a distribution is called the marginal distribution of x.

The variables x and y are independent if their joint distribution function can be
factorized,

p(x, y) = p(x)p(y), (54)

for all values of x and y (see Section 3, axiom 4).

1.7.2 The probability distribution of summed random variables

Let us consider the distribution of the sum of two or more random variables: this will
lead us on to the Central Limit Theorem which is of critical importance in probability
theory and hence astrophysics.

Let us define a new random variable z = x + y. What is the probability density, p(z)
of z? The probability of observing a value, z, which is greater than some value z1 is

p(z ≥ z1) =
∫ ∞

z1

dz p(z) (55)

=
∫ ∞

−∞
dy
∫ ∞

z1−y
dx p(x, y), (56)
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where the integral limits on the second line can be seen from defining the region in the
x − y plane (see Figure 4).

Figure 4: The region of integration of equation (56).

If we now change variables back to z, so x = z − y we find

p(z ≥ z1) =
∫ ∞

−∞
dy

∫ ∞

z1

dz p(z − y, y). (57)

Now, comparing with equation (55) we can write p(z) as

p(z) =
∫ ∞

−∞
dy p(z − y, y) (58)

If the distributions of x and y are independent, then we arrive at a particularly im-
portant result;

p(z) =
∫ ∞

−∞
dy p(z − y)p(y) (59)

If we add together two independent random variables, the resulting distribu-
tion is a convolution of the two distribution functions.

The most powerful way of handling convolutions is to use Fourier transforms
(F.T.’s), since the F.T. of a convolved function p(z) is simply the product of the F.T.s of
the separate functions p(x) and p(y) being convolved.

1.7.3 Error propagation

If σx and σy are the uncertainties on the independent random variables x and y, what is
the uncertainty on z ? Let’s assume x and y have zero mean. Then

σ2
z = 〈z2〉
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=
∫ ∞

−∞
dzdy z2p(z − y)p(y)

=
∫ ∞

−∞
dxdy (x + y)2p(x)p(y)

=
∫ ∞

−∞
dxdy (x2 + 2xy + y2)p(x)p(y)

= 〈x2〉 + 〈y2〉
= σ2

x + σ2
y (60)

Hence the variance of a sum of independent random variables is equal to the sum of their
variances. This result is independent of the underlying distribution functions.

In general if z = f(x, y) we can propagate errors by expanding f(x, y) around some
arbitrary values, x0 and y0;

f(x, y) = f(x0, y0) + x
∂f

∂x
+ y

∂f

∂y
. (61)

The mean is
〈z〉 = f(x0, y0) (62)

and the variance is;

σ2
z = 〈z2〉 − 〈z〉2

=
∫ ∞

−∞
dxdy (f − 〈f〉)2p(x)p(y)

=
∫ ∞

−∞
dxdy (x2f 2

x + y2f 2
y + 2xyfxfy)p(x)p(y) (63)

where we have used the notation fx ≡ ∂f/∂x.

Averaging over the random variables we find

σ2
z =

(

∂f

∂x

)2

σ2
x +

(

∂f

∂y

)2

σ2
y . (64)

This formula will allow us to propagate errors for arbitrary function. Note again that this
is valid for any distribution function, but depends on (1) the underlying variables being
independent, (2) the function being differentiable and (3) the variation from the mean
being small enough that the expansion is valid.

1.8 Characteristic functions

Let’s return to the problem of dealing with convolutions of functions. As we noted above,
the easiest way to handle convolutions is with Fourier Transforms. In probability theory
the Fourier Transform of a probability distribution function is known as the character-
istic function:

φ(k) =
∫ ∞

−∞
dx p(x)eikx (65)

with reciprocal relation

p(x) =
∫ ∞

−∞

dk

2π
φ(k)e−ikx (66)
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(note the choice of where to put the factor 2π is not universal). Hence the characteristic
function is also the expectation value of eikx;

φ(k) = 〈eikx〉. (67)

Part of the power of characteristic functions is the ease with which one can generate
all of the moments of the distribution by differentiation:

mn =

[

d

d(ik)

]n

k=0

φ(k). (68)

This can be seen if one expands φ(k) in a power series;

φ(k) = 1 + ik〈x〉 − 1

2
k2〈x2〉 + · · · . (69)

As an example of a characteristic function lets consider the Poisson distribution.

φ(k) =
∞
∑

n=0

λne−λ

n!
eikn = e−λeλeik

. (70)

Hence the characteristic function for the Poisson distribution is

φ(k) = eλ(eik−1). (71)

Returning to the convolution equation (59),

p(z) =
∫ ∞

−∞
dy p(z − y)p(y), (72)

we shall identify the characteristic function of p(z), p(x), p(y) as φz(k), φx(k) and φy(k)
respectively. The characteristic function of p(z) is then

φz(k) =
∫ ∞

−∞
dz p(z)eikz

=
∫ ∞

−∞
dz

∫ ∞

−∞
dy p(z − y)p(y)eikz

=
∫ ∞

−∞
dz

∫ ∞

−∞
dy (p(z − y)eik(z−y))(p(y)eiky) (73)

Fourier transforming in the last equation we find

φz(k) = φx(k)φy(k), (74)

as expected from the properties of Fourier transforms.

The power of this approach is that the distribution of the sum of a large number of
random variables can be easily derived. This result allows us to turn now to the Central
Limit Theorem.
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1.9 The Central Limit Theorem

The most important, and general, result from probability theory is the Central Limit
Theorem. It is

• Central to probability and statistics - without it much of probability and statistics
would be impossible,

• A Limit Theorem because it is only asymptotically true in the case of a large
sample.

Finally, it is extremely general, applying to a wide range of phenomena and explains why
the Gaussian distribution appears so often in Nature.

In its most general form, the Central Limit Theorem states that the sum of n random
values drawn from a probability distribution function of finite variance, σ2, tends to be
Gaussian distributed about the expectation value for the sum, with variance nσ2 .

There are two important consequences:

1. The mean of a large number of values tends to be normally distributed regardless
of the probability distribution from which the values were drawn. Hence the
sampling distribution is known even when the underlying probability
distribution is not. It is for this reason that the Gaussian distribution occupies
such a central place in statistics. It is particularly important in applications where
underlying distributions are not known, such as astrophysics.

2. Functions such as the Binomial, Poisson, χ2 or Student-t distribution arise from
multiple drawings of values from some underlying probability distribution, and they
all tend to look like the Gaussian distribution in the limit of large numbers of
drawings. We saw this earlier when we derived the Gaussian distribution from the
Poisson distribution.

The first of these consequences means that under certain conditions we can assume
an unknown distribution is Gaussian, if it is generated from a large number of
events. For a non-astrophysical example, the distribution of human heights is Gaussian,
because the total effects of genetics and environment can be thought of as a sum of
influences (random variables) that lead to a given height. The height of surface of the
sea has a Gaussian distribution, as it is perturbed by the sum of random winds. The
surface of planets has a Gaussian distribution due to the sum of all the factors that have
formed them. The second consequence means that many distributions, under the right
circumstances, can be approximated by a Gaussian. This is very useful since the
Gaussian has many simple properties which we shall use later.

1.9.1 Derivation of the central limit theorem

Let

X =
1√
n

(x1 + x2 + · · · + xn) (75)
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be the sum of n random variables xi, each drawn from the same arbitrary underlying
distribution function, (in general the underlying distributions can be different for each xi,
but for simplicity we shall only consider only one). The distribution of X’s generated by
this summation, let’s call it p(X), will be a convolution of the underlying distributions.

From the properties of characteristic functions we know that a convolution of distribu-
tion functions is a multiplication of characteristic functions. If the characteristic function
of p(x) is

φx(k) =
∫ ∞

−∞
dx p(x)eikx = 1 + i〈x〉k − 1

2
〈x2〉k2 + O(k3), (76)

where in the last term we have expanded out eikx. Since the sum is over xi/
√

n, rather
than xi we scale all the moments 〈xp〉 → 〈(x/

√
n)p〉. From equation (76),we see this is

the same as scaling k → k/
√

n. Hence the characteristic function of X is

ΦX(k) = [φx(k/
√

n)]n (77)

If we assume that m1 = 〈x〉 = 0, so that m2 = 〈x2〉 = σ2
x (this doesn’t affect our results)

then

ΦX(k) =

[

1 − σ2
xk

2

2n

]n

→ e−σ2
xk2/2 (78)

as n → ∞. Note the higher terms contribute as n−3/2 in the expansion of ΦX(k) and so
vanish in the limit. We know that the F.T. of a Gaussian is another Gaussian, but let’s
show that (by ”completing the square”):

p(X) =
1

2π

∫ ∞

−∞
dk ΦX(k)e−ikX

=
e−X2/(2σ2

x)

2π

∫ ∞

−∞
dk e(−σ2

xk2+X2/σ2
x−2ikX)/2

=
e−X2/(2σ2

x)

2π

∫ ∞

−∞
dk e(X/σx−ikσx)2/2

=
e−X2/(2σ2

x)

√
2πσx

. (79)

Thus the sum of random variables, sampled from the same underlying distri-
bution, will tend towards a Gaussian distribution, independently of the initial
distribution.

1.9.2 Measurement theory

As a corollary, by comparing equation (75) with the expression for estimating the mean
from a sample of n variables,

x̄ =
1

n

n
∑

i=1

xi, (80)

we see that the estimated mean from a sample has a Gaussian distribution with mean
m1 = 〈x〉 and variance σ2 = µ2/n as n → ∞.

This has two important consequences.
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1. This means that if we estimate the mean from a sample, we will always tend towards
the true mean,

2. The uncertainty in our estimate of the mean will vanish as the sample gets bigger.

This is a remarkable result: for sufficiently large numbers of drawings from an unknown
distribution function with mean 〈x〉 and standard deviation σ/

√
n, we are assured by the

Central Limit Theorem that we will get the measurement we want to higher and higher
accuracy, and that the estimated mean of the sampled numbers will have a Gaussian
distribution almost regardless of the form of the unknown distribution. The only condition
under which this will not occur is if the unknown distribution does not have a finite
variance. Hence we see that all our assumptions about measurement rely on
the Central Limit Theorem.

1.9.3 How the Central Limit Theorem works

We have seen from the above derivation that the Central Limit Theorem arises because in
making many measurements and averaging them together, we are convolving a probability
distribution with itself many times.

We have shown that this has the remarkable mathematical property that in the limit
of large numbers of such convolutions, the result always tends to look Gaussian. In this
sense, the Gaussian, or normal, distribution is the “smoothest” distribution which can be
produced by natural processes.

We can show this by considering a non-Gaussian distribution, ie a top-hat, or square
distribution (see Figure 5). If we convolve this with itself, we get a triangle distribution.
Convolving again we get a slightly smoother distribution. If we keep going we will end
up with a Gaussian distribution. This is the Central Limit Theorem and is the reason for
its ubiquitous presence in nature.

Figure 5: Repeated convolution of a distribution will eventually yield a Gaussian if the
variance of the convolved distribution is finite.
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1.10 Sampling distributions

Above we showed how the Central Limit Theorem lies at the root of our expectation
that more measurements will lead to better results. Our estimate of the mean of n
variables is unbiased (ie gives the right answer) and the uncertainty on the estimated
mean decreases as σx/

√
n, and the distribution of the estimated, or sampled, mean has a

Gaussian distribution. The distribution of the mean determined in this way is known as
the “sampling distribution of the mean”.

How fast the Central Limit Theorem works (i.e. how small n can be before the dis-
tribution is no longer Gaussian) depends on the underlying distribution. At one extreme
we can consider the case of when the underlying variables are all Gaussian distributed.
Then the sampling distribution of the mean will always be a Gaussian, even if n → 1.

But, beware! For some distributions the Central Limit Theorem does not hold. For
example the means of values drawn from a Cauchy (or Lorentz) distribution,

p(x) =
1

π(1 + x2)
(81)

never approach normality. This is because this distribution has infinite variance (try and
calculate it and see). In fact they are distributed like the Cauchy distribution. Is this a
rare, but pathological example ? Unfortunately not. For example the Cauchy distribution
appears in spectral line fitting, where it is called the Voigt distribution. Another example
is if we take the ratio of two Gaussian variables. The resulting distribution has a Cauchy
distribution. Hence, we should beware, that although the Central Limit Theorem and
Gaussian distribution considerably simplify probability and statistics, exceptions do occur,
and one should always be wary of them.

1.10.1 The sample variance

The mean of the sample is an estimate of the mean of the underlying distribution. Given
we may not directly know the variance of the summed variables, σ2

x, is there a similar
estimate of the variance of X? This is particularly important in situations where we need
to assess the significance of a result in terms of how far away it is from the expected value,
but where we only have a finite sample size from which to measure the variance of the
distribution.

We would expect a good estimate of the population variance would be something like

S2 =
1

n

n
∑

i=1

(xi − 〈x〉)2, (82)

where

〈x〉 =
1

n

n
∑

i=1

xi (83)

is the sample mean of n values. Let us find the expected value of this sum. First we
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re-arrange the summation

S2 =
1

n

n
∑

i=1

(xi − 〈x〉)2 =
1

n

∑

x2
i −

2

n

∑

i

∑

k

xixk +
1

n2

∑

i

∑

k

xixj =
1

n

∑

x2
i −

(

1

n

n
∑

i=1

xi

)2

(84)
which is the same result we found in Section 1.4 – the variance is just the mean of the
square minus the square of the mean. If all the xi are drawn independently then

〈
∑

i

f(xi)〉 =
∑

i

〈f(xi)〉 (85)

where f(x) is some arbitrary function of x. If i = j then

〈xixj〉 = 〈x2〉 i = j, (86)

and when i and j are different

〈xixj〉 = 〈x〉2 i 6= j. (87)

The expectation value of our estimator is then

〈S2〉 =

〈

1

n

∑

x2
i −

(

1

n

n
∑

i=1

xi

)2〉

=
1

n

∑

〈x2〉 − 1

n2

∑

i

∑

j 6=i

〈x〉2 − 1

n2

∑

〈x2〉

= 〈x2〉 − n(n − 1)

n2
〈x〉2 − n

n2
〈x2〉

=
(

1 − 1

n

)

〈x2〉 − n(n − 1)

n2
〈x〉2

=
(n − 1)

n
(〈x2〉 − 〈x〉2). (88)

The variance is defined as σ2 = 〈x2〉 − 〈x〉2, so S2 will underestimate the variance by the
factor (n − 1)/n. This is because an extra variance term, σ2/n, has appeared due to the
extra variance in our estimate in the mean. Since the square of the mean is subtracted
from the mean of the square, this extra variance is subtracted off from our estimate of the
variance, causing the underestimation. To correct for this we should change our estimate
to

S2 =
1

n − 1

n
∑

i=1

(xi − 〈x〉)2 (89)

which is an unbiased estimate of σ2, independent of the underlying distribution. It is
unbiased because its expectation value is always σ2 for any n when the mean is estimated
from the sample.

Note that if the mean is know, and not estimated from the sample, this extra variance
does not appear, in which case equation (82) is an unbiased estimate of the sample
variance.
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1.10.2 Measuring quasar variation

We want to look for variable quasars. We have two CCD images of one field taken some
time apart and we want to pick out the quasars which have varied significantly more than
the measurement error which is unknown.

In this case

S2 =
1

n − 1

n
∑

i=1

(∆mi − ∆m)2 (90)

is the unbiased estimate of the variance of ∆m. We want to keep ∆m 6= 0 (i.e. we want to
measure ∆m from the data) to allow for possible calibration errors. If we were confident
that the calibration is correct we can set ∆m = 0, and we could return to the definition

σ2 =
1

n

∑

i

(∆m)2. (91)

Suppose we find that one of the ∆m, say ∆mi, is very large, can we assess the signif-
icance of this result? One way to estimate its significance is from

t =
∆mi − ∆m

S
. (92)

If the mean is know this is distributed as a standardised Gaussian (ie t has unit variance)
if the measurement errors are Gaussian.

But if we can only estimate the mean from the data, t is distributed as Student-t9.
The Student-t distribution looks qualitatively similar to a Gaussian distribution, but it
has larger tails, due to the variations in the measured mean and variance.

9The name ‘Student’ comes about because the first derivation was part of an undergraduate exam.
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PART TWO

2 STATISTICAL INFERENCE

2.1 Model fitting and parameter estimation

We often need to do things like fit a model curve through data on a 2-D graph, or surfaces
in higher dimensions. The model might have some physical significance, such as fitting the
Hubble diagram with the family of curves predicted by Friedmann cosmology for differing
values of ΩV and Ωm, or to extract many (i.e. 17) cosmological parameters from the
pattern of galaxies in a redshift survey, or from the pattern of fluctuations in the Cosmic
Microwave Background radiation (see Figure 6). Or we may just want to find the best-fit
straight line from a set of data. In either case we also usually want:

1. A test of how well the model fits the data. ie. do we believe our model of the
data?

2. To find the allowable ranges of free parameters of the model. ie. how do
we decide on the range of models that adequately fits the data.

There are several methods which could be chosen.

Let’s first consider curve and model fitting. One of the easiest and most prevalent
method is Least Squares.

2.1.1 The method of least-squares fits

We assume we have a set of data-values, Di, measured as a function of some variable xi

and a model which predicts the data-values, M(x, θ), where θ are some unknown (free)
parameters. Least-squares minimises the sum

S =
∑

i

(Di − M(xi, θ))
2, (93)

with respect to the parameters, θ. We may have reason to weight some of the data values
higher than others (if for example they have smaller measurement errors) in which case
we minimise

S =
∑

i

wi(Di − M(xi, θ))
2 (94)

where wi are a set of arbitrary weights.

If we want to minimise the uncertainty on a model, then the optimum weightings are
wi = 1/σ2

i , where σi are the errors on the data (we’ll show this soon). In this case S is
usually known as χ2-squared (chi- squared) and χ2 has its own particular χ2-distribution
if the data are independent with errors which have a Gaussian distribution, with variance
σ2

i .
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Figure 6: LHS: Estimation of the acceleration of the Universe from Supernova Type 1a
sources. RHS: Fitting the variance of temperature fluctuations in the Cosmic Microwave
Background to data from the BOOMERANG balloon experiment. How do we know which
curve is the best fit? And how do we know what values the parameters can take?

Figure 7: Least-squares fitting. Usually we have to find the minimum of the function S
by searching parameter space.
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In general it is not possible to find the best-fitting θ values in one single step: we have
to evaluate S for a range of values of θ and choose the values of θ which give the smallest
value of S. Hence the name Least Squares.

2.1.2 Estimating a mean from Least Squares

What is the optimal (ie smallest error) estimate of the mean, 〈x〉, of a set of observations,
xi, and what is its variance? In this case we want to minimise the function

S =
∑

i

wi(xi − 〈x〉)2, (95)

with respect to 〈x〉. Hence

∂S

∂〈x〉 = 2
∑

i

wi(xi − 〈x〉) = 0, (96)

which has the solution

〈x〉 =

∑

i wixi
∑

i wi

. (97)

The variance on this can be found by Propagation of Errors (see Section 1.7.3):

σ2(〈x〉) =
∑

i

(

∂〈x〉
∂xi

)2

σ2
i

=

∑

i w
2
i σ

2
i

(
∑

j wj)2
(98)

We can use this to find the set of weights which will minimise the error on the mean, by
minimising σ2(〈x〉) with respect to the wi:

∂σ2(〈x〉)
∂wi

= −2
∑

i w
2
i σ

2
i

(
∑

j wj)3
+

2wiσ
2
i

(
∑

j wj)2
(99)

which implies
∑

i

w2
i σ

2
i = wiσ

2
i

∑

j

wj. (100)

This last equation is solved when

wi =
1

σ2
i

. (101)

This set of weights is the minimum variance weighting scheme.

2.1.3 Multiparameter estimation

In many cases we will be concerned with many parameters θi in which case the process
is extended to more dimensions: the following graph shows contours of S as a function of
two free parameters θ1 and θ2:
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Figure 8: Multi-parameter Least-squares fitting. Usually we have to find the minimum of
the function S by searching an n-dimensional parameter space. In practise this can be
very difficult.

If the model function M(x, θ) = y(x, θ) can be expressed as a power series expansion
of x where the free parameters θi are the series coefficients, then the minimum point can
be found in a single step:

yi = θ0 + θ1xi + θ2x
2
i + · · · =

∑

n

θnxn
i (102)

In this case we are fitting a polynomial curve to x and y data values. Minimising S with
respect to each θ we find

∂S

∂θm

=
∂

∂θm

∑

j

(yj −
∑

n

θnxn
j )2

= 2
∑

j

(yj −
∑

n

θnxn
j )xm

j = 0 (103)

where ∂θn/∂θm = 0 if n 6= m and 1 if n = m, since the parameters are independent.
Equation (103) implies that for polynomial models of the data

∑

j

yjx
m
j =

∑

j

∑

n

θnxn+m
j (104)

The θn values can be found by matrix inversion. If we define Am =
∑

j yjx
m
j and Bnm =

∑

j xn+m
j then equation (104) can be written

Am = Bnmθn (105)

where we have assumed summation over repeated indices. This has the solution

θn = B−1
nmAm (106)

where B−1 is the matrix inverse of B.
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Figure 9: LHS: Example of a fit to data where the χ2 value is too high. RHS: Example of
a fit to data where the χ2 value is too low.

2.1.4 Goodness of fit

Once we have found the least squares solution, we must now ask is the fit acceptable?
To do this we find the distribution and ask if the cumulative probability, P (> χ2) , is
acceptable. If the measurement errors are Gaussian then by changing variables we find
the distribution of χ2 is10,

p(χ2|ν) =
e−χ2/2

Γ(ν/2)

(

χ2

2

)ν/2−1

, (108)

where ν is the number of degrees of freedom, defined as the number of data points,
nD, minus the number of free parameters, nθ; ν = nD − nθ > 0. This can be used to test
the goodness of fit by seeing if the value of χ2 is consistent with the known errors.

2.1.5 A rule of thumb for goodness of fit

A useful rule of thumb is that for a good fit

χ2 = ν ±
√

2ν. (109)

This approximation assumes that χ2 is large enough that p(χ2|ν) is nearly a Gaussian
distribution with mean ν and variance 2ν (the Central Limit Theorem in action again!).

10
Maths note: The Gamma function is a standard function generalising factorials to real and imagi-

nary numbers:

Γ(n + 1) = n!

Γ(n + 1) = nΓ(n)

Γ(1/2) =
√

π (107)
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Figure 10: The accelerating universe: line fitting to SNIa data.

Too high a value (χ2 � ν +
√

2ν) can indicate that the model is not a good fit, or
that the errors are underestimated. In the first case the model may have to be rejected
as there is no point in estimating parameters for a model that does not fit the data. In
the second case it may be that the errors are in reality larger than believed. This is
very common in astronomy where random measurement errors are easy to determine but
where systematic errors often dominate.

Too small a value (χ2 � ν −
√

2ν) is as bad as too high a value. Too small a
value may indicate hidden correlations between data points, or that the errors are over-
estimated. This should be investigated before proceeding further.

In general one should always check the value of P (≥ χ2|ν), or χ2/ν = 1±
√

2/ν, rather

than try “chi-by-eye” (ie guessing it’s ok).

2.1.6 Confidence regions for minimum χ2

Having found the best-fitting values for a set of parameters, we also want to assign limits
to the values which those parameters may have.

e.g. In fitting a Friedmann cosmological model to the Hubble diagram of Type Ia
supernovae, we can find some best-fitting value for ΩV , the vacuum energy-density. What
is the statistical uncertainty in the value of ΩV due to the random errors in the data?
If we can find two values of ΩV , ΩV,min and ΩV,max such that the probability that the
observed values of χ2 or greater, P (≥ χ2), should only occur with some probability, x
(say 0.32) then these values define the (1− x)× 100% confidence region (say, 68%) for
ΩV .
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Figure 11: Confidence regions for estimating ΩV from supernova data.

In the above example (Figure 11) the 68% confidence limits for ΩV are 0.5 and 0.9: ΩV

lies within that range with 68% confidence: there is a 32% chance that the true value of
ΩV is outside that range, with the errors on the data conspiring to make the data appear
consistent with ΩV = 0.7.

Again, these limits only have any meaning if we are confident that the model is correct.
On the Hubble diagram for example, a good fit to the data can be found for ΩV = 0.7±0.2
(68% confidence level), but this would be meaningless if the effects of evolution change
the luminosity of supernova at high redshifts so that the Hubble diagram is actually
determined much more by the evolution than by the value of ΩV .

Bearing this in mind, how do we evaluate these confidence limits?

It can be shown, assuming Gaussian statistics, that the x% confidence region for one
free parameter is bounded by the value of χ2 such that if χ2 = χ2

min + ∆χ2 then ∆χ2 is
determined by the distribution of χ2 for one degree of freedom, where here the number of
degrees of freedom equals just the number of free parameters.

For example the probability that the solution lies within ∆χ2 = 1 is P (x ≤ ∆χ2|ν = 1)
which is 68.3% or 1-σ uncertainty for Gaussian errors. This can be extended to larger
numbers of free parameters and degrees of confidence. For instance for two parameter we
use the ∆χ2 = 2.3 threshold for 68% confidence regions.

We can be even more stringent on how we quote errors. For a single parameter we
may want to quote the range of values where there is a 95% chance that the true values
lies. In this case we must find the range of solutions which lies within ∆χ2 = 4. For 99%
confidence regions we require ∆χ2 = 7, for a single parameter.

Note that in the goodness-of-fit test, the number of degrees of freedom, ν, for the
distribution of χ2 was given by the number of data points minus the number of free
parameters to be fitted. In the case of parameter estimation, the number of degrees of
freedom for ∆χ2 is just the number of free parameters.
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2.2 Maximum Likelihood Methods

Minimum-χ2 is a useful tool for estimating goodness-of-fit and confidence regions on
parameters. However it can only be used in the case where we have a set of measured
data values with a known, Gaussian-distributed, scatter about some model values. A
more general tool is to use the technique of Maximum Likelihood.

The “likelihood function” is the joint probability distribution, p(D1, · · · , Dn|θ1, · · · , θm)
of n measured data values, Di, drawn from a model distribution with m free parameters
θj:

L(D1, · · · , Dn|θ1, · · · , θm) = p(D1, · · · , Dn|θ1, · · · , θm). (110)

If the data values are independent then;

L(D1, · · · , Dn|θ1, · · · , θm) = p(D1|θ1, · · · , θm) · · · p(Dn|θ1, · · · , θm)

=
n
∏

i=1

p(Di|θ1, · · · , θm). (111)

The technique of maximum likelihood maximises this function with respect to the
free parameters θ. That is, it chooses the values of parameters which most closely simulate
the distribution of the observed data values. In practice, it is easier to maximise ln(L)
rather than L: i.e.

∂

∂θ
ln L = 0. (112)

The method is particularly useful when the type of models being investigated are not
those that predict a value for each of a set of measured quantities, but rather those that
predict the statistical distribution of values in a sample. In this case, one may not know
the error on any individual measurement. It is also very useful when the distribution of
the data is known to be non-Gaussian. In this case Maximum Likelihood is both very
versatile and simple to apply.

2.2.1 The flux distribution of radio sources

The distribution of flux densities of extragalactic radio sources are distributed as a power-
law with slope −α, say. In a non-evolving Euclidean universe α = 3/2 (can you prove
this?) and departure of α from the value 3/2 is evidence for cosmological evolution of
radio sources. This was the most telling argument against the steady-state cosmology in
the early 1960’s (even though they got the value of a wrong by quite a long way).

Given observations of radio sources with flux densities S above a known, fixed mea-
surement limit S0, what is the best estimate for α?

The model probability distribution for S is

p(S)dS = (α − 1)Sα−1
0 S−αdS (113)
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where the factors α− 1 in front of the term arise from the normalization requirement

∫ ∞

S0

dS p(S) = 1. (114)

So the likelihood function L for n observed sources is

L =
n
∏

i=1

(α − 1)Sα−1
0 S−α

i (115)

with logarithm

ln L =
n
∑

i=1

(ln(α − 1) + (α − 1) ln S0 − α ln Si). (116)

Maximising ln L with respect to α:

∂

∂α
ln L =

n
∑

i=1

(

1

α − 1
+ ln S0 − ln Si

)

= 0 (117)

we find the minimum when
α = 1 +

n
∑n

i=1 ln Si

S0

. (118)

Suppose we only observe one source with flux twice the cut-off, S1 = 2S0, then

α = 1 +
1

ln 2
= 2.44 (119)

but with a large uncertainty. Clearly, as Si = S0 we find α → ∞ as expected. In fact
α = 1.8 for bright radio sources at low frequencies, significantly steeper than 1.5.

2.2.2 Goodness-of-fit and confidence regions from maximum likelihood

In cases where we are fitting a set of data values with known Gaussian errors, then
maximum-likelihood is precisely equivalent to minimum-χ2, since in this case ln L =
−χ2/2. The distribution of −2 ln L is then the χ2-distribution and hence we can readily
calculate a goodness of fit.

In cases such as the example in Section 2.2.1, however, the probability distribution
assumed for the model is not Gaussian – it is the power-law model for the source counts.
In this case we do not know what the expected distribution for the ln(likelihood) actually
is, and hence we cannot estimate a goodness-of-fit.

In the limit of large numbers of observations, we can still estimate confidence regions
for parameters, however (another example of the operation of the Central Limit Theo-
rem) in that we expect the distribution of −1/2 ln L to have the χ2 distribution with the
number of degrees of freedom equal to the number of free parameters (c.f. the estimation
of confidence regions in the case of minimum χ2).

In practice one would instead plot out the likelihood surface in parameter space. In
the case of two parameter this will generally be an ellipse.
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2.2.3 Estimating parameter uncertainty

Although plotting out the likelihood contours around the maximum is a good indicator
of the parameter uncertainty, it can sometimes be computationally expensive, especially
for large data sets, and many parameters. An alternative is to use the second derivative
of the log-likelihood:

σ2(θi) = −
(

∂2 ln L

∂θ2

)−1

(120)

to estimate the error. The idea is that the surface of the likelihood function can be
approximated about its maximum, at θmax, by a Gaussian;

L(θ) =
e−∆θ2/(2σ2(θ))

√
2πσ(θ)

(121)

where ∆θ = θ − θmax. Equation (120) can be verified by expand ln L to 2nd order in
∆θ and differentiating. This can be generalized to multiple parameters by the covariance
matrix

〈∆θi∆θj〉 = F−1
ij (122)

where

Fij = −∂2 ln L

∂θi∂θj

(123)

is called the Fisher Information Matrix, after the Statistician R.A. Fisher. This can
be used to estimate both the conditional errors, σ2

cond(θ) = 1/Fii, where we assume the
other parameters are known, and the marginalised errors, [F−1]ii. These two quantities
satisfy the relation

1/Fii ≤ [F−1]ii. (124)

The Fisher Matrix is commonly used in cosmology in both survey design and analysis.

2.3 Hypothesis testing

2.3.1 Introduction

The concept of testing goodness-of-fit of a model, and of estimating confidence regions
for parameters, is part of the more general philosophical problem of hypothesis testing:

Given a set of data, can we distinguish between two (or more) hypotheses
or models which predict those data values?

In some sense, we wish to compare the goodness of fit of the two hypotheses. There
tend to be two schools of thought among statisticians, the Frequentists and Bayesians we
met at the beginning, over how to do this, and the subject is very controversial. The
problem arises from Bayes’ Theorem, published posthumously in 1763, which describes
how to new information changes a probability distribution. It was really the first attempt
to use statistical axioms to make decisions on hypotheses. If we follow the logical con-
sequences of Bayes’ work, we find that the tests of goodness-of-fit of models described
above are fundamentally incomplete in their treatment of the problem.
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2.3.2 Bayes Theorem

Suppose we are given some information about a physical experiment, which we shall
denote by I. We carry out the experiment and get a result, or set of data, denoted D.
Now we want to choose between two hypotheses H1 and H2. From the axioms we met
in Lecture 1, we can say that the conditional joint probability of obtaining the result D
and of Hi being correct, given our prior information I, is

p(HiD|I) = p(D|I)p(Hi|DI). (125)

That is, the joint probability of the hypothesis and data (result) being true, given the
initial information, p(H1D|I), is the probability of obtaining that data set given only the
initial information, p(D|I), multiplied by the probability of Hi being correct given the
prior information I and data D, p(Hi|DI) (this is known as the a posteriori probabil-
ity). This is not very useful, but if we swap Hi and D we find

p(HiD|I) = p(Hi|I)p(D|HiI), (126)

which now says that this joint probability is the likelihood, p(D|HiI) (the probability of
getting a data set, D, from hypothesis Hi given I), multiplied by the prior probability,
p(Hi|I), of the hypothesis Hi being true in the absence of any data other than I. Thus

p(Hi|DI) =
p(Hi|I)p(D|HiI)

p(D|I)
. (127)

This is Bayes’ Theorem. If we want to choose between the two hypotheses H1 and
H2, we should evaluate p(H1|DI) and p(H2|DI) and choose the most probable result.
The factor, p(D|I), called the evidence, is the same for H1 and H2, so we can use the
likelihood ratio,

p(H1|DI)

p(H2|DI)
=

p(H1|I)p(D|H1I)

p(H2|I)p(D|H2I)
(128)

to choose the higher probability.

If we assume that the two prior probabilities are equal, then we just choose the hy-
pothesis with the highest likelihood. In fact, it is common to ignore Bayes’ Theorem
entirely and simply determine the likelihoods, and proponents of such tests do not con-
sider the possible non-equality of the prior probabilities. Indeed, Bayes postulated that in
the absence of any information to the contrary we should assume equal prior probabilities
(Bernoulli’s “Principle of Insufficient Reason”).

2.3.3 Updating the probability of a hypothesis

If we now obtain some more information, perhaps from a new experiment, then we can use
Bayes’ theorem to update our estimate of the probabilities associated with each hypothe-
sis. The problem reduces to that of showing that adding the results of a new experiment
to the probability of a hypothesis is the same as doing the two experiments first, and then
seeing how they both effect the probability of the hypothesis. In other words it should
not matter how we gain our information, the effect on the probability of the hypothesis
should be the same.
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We start with Bayes’ expression for the posteriori probability of a hypothesis,

p(H|DI) =
p(H|I)p(D|HI)

p(D|I)
. (129)

Let say we do a new experiment with new data, D′. We can then express this by trans-
forming equation (129) by D → D′ and letting the old data become part of the prior
information I → DI. Bayes’ theorem is now

p(H|D′DI) =
p(H|DI)p(D′|HDI)

p(D′|DI)
. (130)

We now notice that the new prior in this expression is just the old posteriori probability
from equation (129), and that the new likelihood is just

p(D′|DHI) =
p(D′D|HI)

p(D|HI)
. (131)

Substituting in the old posteriori probability and this expression for the new likelihood
we find

p(H|D′DI) =
p(H|I)p(D′D|HI)

p(D′D|I)
(132)

which has the same form as equation (129), the outcome from the initial experiment, but
now with the new data incorporated, ie. we have shown D → D′ and I → DI is the
same is D → D′D. This shows us that it doesn’t matter how we add in new information.
Bayes’ theorem gives us a natural way of improving our statistical inferences
as our state of knowledge increases.

2.3.4 The prior distribution

In Lecture 1 we discussed that Frequentists and Bayesians have different definitions of
probability, which can lead to different results. These discrepancies occur particularly
in parameter estimation: a Bayesian would multiply the likelihood function for a given
parameter value by a prior probability. The maximum likelihood estimate of α in Section
2.2.1 is Bayesian if the prior probability is assumed to be a constant per unit α.

But the Bayesian estimate will change if we assume a different prior, such as constant
probability per unit ln α. We may do this if α has to be positive, or if we want to search
for the most likely α over many orders of magnitude. In this case

p(ln α) =
1

α
p(α). (133)

Here our initial problem of how we assign probabilities becomes most apparent. It is this
arbitrariness that is unattractive to Frequentists, who ignore the prior. The Bayesian
point of view is that the prior exists and so we must choose something.

But it is as well to be aware that ignoring priors is equivalent to making a specific
choice of prior by default. Hypothesis testing and parameter estimation is a minefield of
philosophical uncertainty! Some astronomers use both Bayesian and Frequentist methods
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to satisfy both. Another view is that if the choice of prior really matters, there cannot be
enough information in the data to decide which is the most likely hypothesis.

In the next section we look at one application where Bayesian methods have become
widely accepted.

2.4 Imaging process and Bayes’ Theorem

2.4.1 Using the prior

A common problem in image processing is to correct an image for the two main processes
which degrade its appearance and hence our interpretation of the scene which it captures.
These two processes are the convolution (or smoothing, or blurring) of an image by some
instrumental response, and the addition of noise to the image (which depending on the
application may arise before the blurring process, as in radioastronomy interferometer
images, or after the blurring process, as in images from optical telescopes).

Even if we knew precisely the blurring function of the system and its noise properties,
there are two reasons why we cannot precisely reconstruct what the scene should look like
if viewed in the absence of these factors.

• First, it may not be possible to unambiguously deconvolve the blurring. Remember
that convolution by a function is equivalent in Fourier space to multiplying the
scene’s Fourier transform by the Fourier transform of the blurring function. Hence
deconvolution is the process of dividing the transform of the observed image by the
transform of the blurring function. In general that process will not be defined at all
spatial frequencies, and some spatial frequencies in the result will have undefined
values. Even in regions where the division is defined, the addition of noise to the
system is likely to have an unstable effect in the deconvolving process.

• Second, the noise is a random statistical process, and so we cannot unambiguously
calculate the intensity at a particular point in a scene, given the observed image:
we can only calculate probabilities that the scene has any particular value at each
point.

So image reconstruction can be seen to be a process of statistical inference, in which
we have to estimate the most likely (in some sense not yet defined) values for the scene
given what we know about the problem: we want to find the best-fitting model scene.
Now in this case, straightforward application of the maximum likelihood technique to
choose the best-fitting model will not work: we have n pixels of data, but each of those
has to be a free parameter in the model. If we want to make progress we need to add
in some extra information, and Bayes’ theorem gives us a way of doing that. We should
choose the model scene which maximises

p(scene|initial information)p(image data|scene, initial information). (134)

The second term is the likelihood, but we now have the ability to bring additional infor-
mation to the problem by means of the prior.
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What can we say about the scene before we attempt to measure an image of it? Re-
member that one of the problems in the deconvolution is that at some spatial frequencies
the Fourier transform may be undefined. Equivalently, the final deconvolved image could
have sinusoidal waves of arbitrary amplitude imposed upon it, unless we take steps to
suppress them. Similarly, the presence of noise would allow large fluctuations to exist at
high spatial frequencies in the image, which in reality would not be appropriate. So one
way to carry out the scene reconstruction is to enforce a prior which penalises solutions
which are not smooth.

A number of schemes exist to do this: perhaps the most publicised is the Maximum
Entropy prior.

2.4.2 Maximum Entropy

Imagine constructing a scene by randomly putting N photons into m pixels. In each pixel
there will be ni = Npi photons. The number of ways in which we can randomly place N
identical photons in m pixels is

N !

n1!n2! · · ·nm!
→ exp

(

−
∑

i

ni ln
(

ni

N

)

)

(135)

where the right hand side limit can be derived by taking the natural log and using Stirling’s
formula;

ln N ! −
∑

i

ln ni! → −N + N ln N −
∑

i

(−ni + ni ln ni)

= −N +
∑

i

ni ln N + N −
∑

i

ni ln ni

= −
∑

i

ni ln
(

ni

N

)

. (136)

We have assumed each photon is indistinguishable. The quantity in the outer brackets
in equation (135), is known as the image entropy, H, by analogy with the entropy
of statistical mechanics, which can also be deduced by considering the multiplicity of
microstates. A prior probability can thus be assigned for each scene which is just propor-
tional to exp[H]. This is the usefulness of Max-Ent, that it gives us a way of choosing
the prior in the case of image processing.

For large N this prior is equal to the number of ways the scene could have been
randomly generated. In this “random scene” model the prior is a maximum when
every pixel has an equal number of photons: the “simplest” scene, the one which adds in
the least amount of structure consistent with the observed data, is preferred over more
complicated scenes. One feature of this choice of prior is that the reconstructed scene
must be positive: you can’t have a scene with negative numbers of photons. For many
images this is a good property to embody into the prior, but this may not be appropriate
for other types of image where negative values may be allowed.

In practice, we may have more information about the scene than assumed above, in
which case we can incorporate that information also into the maximum entropy prior.
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Maximum entropy does not force us to favour only a completely uniform intensity distri-
bution.

Maximum entropy has found favour largely because it works, but there are clearly
other choices of prior which could be made. Note that the maximum entropy prior does
not contain any information about the intensity of pixels relative to their neighbours,
such as you might require if you wanted to adopt the smoothest solution to the scene
restoration. If the pixels in the scene were randomly permuted in position, the image
entropy would be unaffected. This suggests that, for images with complex structure, a
choice of prior which did incorporate information about pixel inter-relationships might
be more effective.

The idea of Maximum Entropy has been extended by E. Jaynes, who has suggested
that it is a way of subjectively solving the problem of how to choose a prior in any
situation, and has further elaborated on the connection with statistical physics . However,
to maintain rigour in this approach, the methods can be rather complex. Again using
this approach become a matter of personal choice.

2.5 Non-parametric statistics

A non-parametric statistical test is one in which the outcome does not depend on
the probability distribution which generated the data. Some statisticians prefer to
call such tests “distribution-free”. By implication, it is not necessary to know that the
probability distribution that generated the data values (and their errors) was in order to
apply a non-parametric test. This is a vital property in many areas (from psychology to
astronomy) where the distributions are not known. The tests are usually quick and easy
to apply – another practical advantage.

If the underlying distribution is known then a parametric test may be more powerful,
but usually this advantage is small and is more than offset by the advantage of the non-
parametric tests. Non-parametric tests are also often valid for very small samples.

There are three important tests which I shall deal with here,

1. The χ2 Goodness-of-Fit Test.

2. The Kolmogorov-Smirnov Test

3. The Spearman Rank Correlation Coefficient.

2.5.1 The χ2-goodness-of-fit test

We have already met the parametric χ2 goodness-of-fit test, in which data values xi

are compared with model predictions. If the errors on the data values are Gaussian
distributed, then the quantity

χ2 =
n
∑

i=1

(xi − λi)
2

σ2
i

(137)
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Figure 12: The K-S test comparing the cumulative distribution of a data set with a theo-
retical cumulative distribution.

(where λi are model predictions; σ2
i are model variances) has a χ2 distribution with n

degrees of freedom, or (n − np) if there are np free parameters whose values have been
estimated from the data by a χ2 procedure.

The non-parametric version of this test is obtained by binning the data values
xi and then comparing the numbers of values in each bin with the numbers predicted
by the model, rather than comparing the x values themselves. If the model predicts
ni values, then the probability of obtaining the observed number, Ni, is given by the
Binomial Distribution. In the limit of large ni the binomial distribution tends to the
normal distribution with variance ni, so for large ni we expect

χ2 =
k
∑

i=1

(Ni − ni)
2

ni

(138)

to tend towards the χ2 distribution, regardless of the model distribution which produced
the observed values. Thus for large ni this test is distribution free.

In fact, the distribution tends towards the χ2 distribution remarkably quickly: ni need
only be as large as 5 in each bin for the test to be accurate.

The expected value of is about the number of degrees of freedom. Quite often, the
model predictions have to be normalised to the total number of observed values, in which
case one degree of freedom is lost: k bins result in (k − 1) degrees of freedom. Again,
estimating free parameters reduces the number of degrees of freedom further.

Perhaps the worst point about the χ2 test is that the data have to be binned, resulting
in a loss of information and hence power. Also, small samples cannot adequately be tested.
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2.5.2 The Kolmogorov-Smirnov test

A very powerful test which can be used for small samples, does not require binning, and is
completely distribution free is the Kolmogorov-Smirnov (KS) test. The one-sample
test tests for a difference between an observed and a model probability distribution. It
does this by looking for the largest difference between the normalised cumulative frequency
distributions.

Suppose there are n data values and that Cn(x) is their cumulative distribution. If the
n events are located at xi, where i = 1, · · · , n, then Cn(x) is the fraction of data points
to the left of a given value x. This function is constant between consecutive points and
jumps by a constant value, 1/n, at each xi. Comparing this distribution with the model
cumulative distribution, M(x), the K-S test is just

D = max−∞<x<∞|Cn(x) − M(x)|, (139)

ie it is just the maximum difference between the cumulative data and the model. This
type of statistic is most sensitive to differences in the mean of two distributions.

The KS test is clearly insensitive to a rescaling of x. For example it is the same using
x or ln x. In addition the distribution of D can be calculated as the probability of finding
the difference D at the ith value is just a binomial distribution. It is beyond this course
to calculate the distribution of D so we shall merely quote it here for completeness:

P (> D) = 2
∞
∑

i=1

(−1)i−1e−2ni2D2

(140)

for large n.

The test is very powerful and distribution free. It can be used to place confidence
limits on the possible values of a cumulative distribution, and it can be generalised to a
two-sample test for comparing two observed distributions to see whether they have been
drawn from different model distributions.

2.5.3 The Spearman rank correlation coefficient

One of the most powerful techniques used in statistical astronomy is to infer relationships
between quantities by searching for a correlation between them
e.g. is there a link between radio and X-ray emission from quasars?
Plot LX (X-ray luminosity) against LR (radio luminosity) for a sample (Figure 13). If
a statistically significant correlation exists, we may infer that LX and LR are related –
although as we shall see later we have to be very careful making that inference.

Standard parametric correlation coefficients can be very useful, but they need to make
some assumption about the distribution of the scatter about the correlation. If the scatter
is due to Gaussian measurement errors, a parametric test, such as the parametric χ2 test,
may be fine.

But in astronomy the scatter on such graphs is usually caused by an intrinsic dis-
persion in the physical properties of the objects rather than by measurement errors.

45



Figure 13: A scatter plot of quasar X-ray luminosity versus radio luminosity.

For example in the quasars’ correlation above there is a scatter of nearly a factor 10
in luminosity - far greater than the measuring error. And of course we have no idea
what the distribution of that “cosmic scatter” might be. So we need a non-parametric
correlation coefficient.

Suppose we have data values Xi and Yi, with means 〈X〉 and 〈Y 〉 . Let us define the
new variables xi = Xi−〈X〉 and yi = Yi−〈Y 〉. A general expression for their correlation
coefficient (see Section 4) is

r =

∑

i xiyi
√

∑

i x
2
i

∑

j y2
j

(141)

The Spearman rank correlation coefficient is obtained by replacing the xi values by
the rank, x̃i (or the integer order that the values lies in) in the x direction, and similarly
replace yi by its rank ỹi. The correlation coefficient, rs obtained from these new ranked
variables is the Spearman rank correlation coefficient:

rs =

∑

i x̃iỹi
√

∑

i x̃2
i

∑

j ỹ2
j

(142)

This may be re-cast into a more convenient form by defining di, the difference between
the rank in the x direction and the rank in the y direction,

di = (x̃i − ỹi). (143)

In this case
∑

i

d2
i =

∑

i

(x̃i − ỹi)
2

=
∑

i

(x̃2
i + ỹ2

i − 2x̃iỹi)

=
∑

i

(x̃2
i + ỹ2

i ) − 2rs

√

∑

i

x̃2
i

∑

j

ỹ2
j . (144)

rearranging this last term we find

rs =

∑

i(x̃
2
i + ỹ2

i − d2
i )

2
√

∑

i x̃
2
i

∑

j ỹ2
j

(145)
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Since the original quantities X̃ and Ỹ are ranks we can calculate that

∑

i

X̃i = n(n + 1)/2

∑

i

X̃2
i = n(n + 1)(2n + 1)/6 (146)

so that

∑

i

x̃2
i =

∑

i

(X̃i − 〈X̃〉)2

=
∑

i

X̃2
i − 1

n

(

∑

i

X̃i

)2

=
n(n2 − 1)

12
. (147)

Putting this all together we find

rs = 1 − 6
∑

i d
2
i

n(n2 − 1)
. (148)

As with other correlation coefficients, −1 ≤ rs ≤ 1.

The significance of any value of rs depends on the sample size, and can be evaluated
from basic probability theory. Suppose the null hypothesis is that there is no correlation:
there is no relation in the population between the x and y values. So for any given rank
order of the y values any order of the x values is just as likely as any other. For n sample
members, there are n! possible rankings of the x values for any order of y values. So the
probability of occurrence of any particular ranking of the x scores with any particular
ranking of the y scores is 1/n!.

For each of these combinations there will be a value of rs, so the probability of oc-
currence of any value of rs, assuming the null hypothesis, is the number of permutations
giving rise to that value divided by n!.

e.g.

1. n = 2: there are only two possible values for rs: rs = ±1. Each can occur with
probability 1/2.

2. n = 3, rs can be −1, −1/2, 1/2, 1 with respective probabilities 1/6, 1/3, 1/3, 1/6 .

The significance of rs:
This process can be carried out for any n, although for large n it can be shown that

t =
rs

sampling error of rs

= rs

(

n − 2

1 − r2
s

)1/2

(149)

has the Student-t distribution with ν = n − 2 degrees of freedom. Again in the limit
of large numbers, n � 1, we can appeal to the Central Limit Theorem and see that 1/t
is the fractional uncertainty on rs.
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Figure 14: The distribution of intrinsic luminosities as a function of distance.

2.6 Inference from correlations

Having found a statistically-significant correlation between two variables, we would
then like to infer that there is a physical link between them (e.g. X-ray emission from
quasars is caused by inverse-Compton scattering in the radio-emitting region).

But we have to be very careful at this point, because artificial correlations can be and
often are induced by the method of sample selection, or by each variable being correlated
with a hidden third variable. These effects are known as selection effects and are very
serious in almost all astronomical data.

The most common selection effects arise in samples in which the members have been
selected as being brighter than some apparent brightness (magnitude, flux density or
whatever). But any given apparent brightness corresponds to higher and higher intrinsic
luminosities as the sample members are located at greater distances. Let us look at the
distribution of intrinsic luminosities in such a sample as a function of distance (Figure
14).

We will not include any objects to the right of the dashed line as they will fall below
our apparent brightness limit. The dashed limit has slope 2 in a Euclidean universe since

Lmin = 4πr2Smin (150)

where r is the distance to the object and Smin is the sample flux density limit. We can
see that we have induced a strong correlation between luminosity and distance which is
purely a selection effect. This is known as Malmquist bias11.

In practice the artificial correlations are often even stronger than suggested by the
figure above, since usually objects of higher luminosity are rarer than those of lower

11In fact Eddington, in 1915, was the first to consider statistical biases which arise using a distance
dependent observable such as apparent magnitude. Malmquist gave a classical discussion of the effect in
the context of stellar magnitudes and star counts in 1920.
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Figure 15: The distribution of intrinsic luminosities for a sample with a range of lumi-
nosities as a function of distance. The apparent correlation is due to a selection effect.

luminosity, so we need to sample a larger volume of space in order for them to appear in
our sample. But as we look to higher distances that is precisely what we are doing: the
volume of a shell of thickness ∆r in distance is 4πr2∆r. So our correlation now looks like
Figure 15.

This figure shows the observed redshift-luminosity relation for 3C radio galaxies se-
lected as having radio flux densities brighter than 10 Jy.

This selection effect also rears its ugly head when correlating two luminosities (e.g.
LR and LX). If sample members are included only if they are brighter than some X-ray
flux density and brighter than some radio flux density, then since both luminosities are
artificially correlated with distance they become artificially correlated with each other:
at larger distances an object has to have higher LR and higher LX to be included in the
sample. This artificial correlation clearly has slope unity since the distance bias is the
same for LX and LR.

There are ways of dealing with this problem. Suppose LR appears correlated with LX

with slope 1 and a selection effect is suspected: plot the flux densities SX and SR against
each other to remove the artificial distance bias. If there is still a correlation then it is
probably not that particular selection effect. Another method is to include objects in the
sample even if they have upper limits to one of the luminosities, and then perform the
correlation assuming the true luminosity of any object with an upper limit is in the place
which most weakens the correlation.

In general other selection effects may occur in the data. Sometimes these are very
subtle and are not realised for many years after publication of the results.
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Figure 16: The shift in the apparent distribution of flux counts of a population of sources
due to measurement errors.

2.6.1 Other Malmquist sampling effects

We met above the most basic form of Malmquist bias – the effect of including more
luminous objects at larger distances in a sample limited by flux density. Similar biases
arise in other situations, and are generally referred to as “Malmquist effects”, although
this general term covers a wide range of types of bias.

Let us look at the bias in the number of radio sources which are counted down to
some limit of flux density, due to the presence of measurement errors. Qualitatively we
can see what happens as follows. At any given flux density we count a number of sources
per unit flux density, but that number contains sources that shouldn’t have been counted
had we measured with infinite precision, because some fainter sources will be measured as
being slightly brighter than they really are. But the same process also scatters objects we
should have counted out of our flux density range. Because there are more faint sources
than there are bright sources, the net effect is to increase the numbers counted over the
true value, and to bias the measured brightnesses to brighter values.

Suppose the true (differential) number of sources per unit flux density is

n(S) = noS
−α. (151)

To get to the observed distribution we convolve this function with the error distribution,
say

f(∆S) =
1√
2πσ

e−∆S2/2σ2

(152)

So the observed number counts are

n′(S) =
n0√
2πσ

∫ ∞

−∞
dS ′ S ′−αe−(S′−S)2/2σ2

=
n0√
2πσ

∫ ∞

−∞
d∆S

(

1 +
∆S

S

)−α

e−∆S2/2σ2

. (153)
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For small ∆S � S, we can expand the brackets in the second line

n′(S) = n(S)
∫ ∞

−∞
d∆S

(

1 +
α∆S

S
+

α(α − 1)∆S2

2S2
+ · · ·

)

e−∆S2/2σ2

√
2πσ

(154)

The integral of the first term is unity; the second term is zero because 〈∆S〉 = 0, and the
third term, with 〈∆S2〉 = σ2, gives approximately the effect of Malmquist bias:

∆n =
α(α − 1)σ2

2S2
n(S) (155)

or

∆ ln n =
∆n

n
=

α(α − 1)σ2

2S2
(156)

This is the change in height of the log(n)−log(S) curve due to the presence of measurement
errors:

This shift is equivalent to a bias in the mean brightness of objects if they are selected
as having apparent brightness S ′;

∆ ln S ′ = −∆ ln n(S)

α

= −(α − 1)σ2

2S2
(157)

or, in magnitudes (m = −2.5log10S)

∆m ≈ −5log10eαmσ2
m

2S2
(158)

if the measurement error in magnitudes is σm and the slope of the log(n) − m relation is
αm = 0.4α.

2.6.2 Example: Malmquist bias in a quasar survey

A quasar survey has selected quasars with magnitudes B < 16.2 over 3 sr of sky, but with
large measurement errors, σm ≈ 0.25. The slope of the log(n) − m relation for quasars is
very steep, due to cosmological evolution, and has a value αm ≈ 0.9. Hence the quasars
which are found in the survey are, on average, measured as being about 0.07 magnitudes
brighter than they really are, and the number of quasars found is a factor about 40% too
high.
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2.7 Monte-Carlo Methods

To finish with, we shall consider an alternative approach to error analysis which has grown
with the availability of fast computing. Many of the analytic approaches to probability and
statistics we have developed in this course have made use of the Central Limit Theorem.
This has allowed us simplify the problem to that of the study of the Gaussian distribution,
which we understand well.

However, in many cases the Central Limit Theorem may not apply (we may not have
enough samples to approach the limit of n → ∞) or we may not believe the underlying
distribution is a Gaussian, but still want to estimate confidence regions. Or it may just
be that we have a very complicated system for which it is hopeless to try and propagate
all of the uncertainties analytically.

To deal with such circumstances, astronomers have turned to a set of methods called
“Monte-Carlo” methods12. The idea here is that we make an ensemble of computer
realizations of whatever system we are studying. For each member of the ensemble, the
components of the system are randomly chosen from each of their underlying distributions.

For example, say we want to model realistic errors on the variance on different scales,
estimated from Cosmic Microwave Background (CMB) sky, as seen by some particular
experiment. We would randomly generate a random temperature field with Gaussian
temperature variations, on a pixelized sky (lets not worry how, but it is quite easy).
We might then want to add foreground microwave emission due to synchrotron radiation
generated in our Galaxy. There may be uncertainties on this foreground which we could
model by sampling each pixel value from another distribution, maybe another Gaussian.
Then we would add noise appropriate to the instrumental response in each pixel, sampling
the noise from e.g. again a Gaussian with a variance equal to the variance due to noise in
the instrument. We could build up a model for the observed CMB fluctuations by adding
more and more layers. We can generate an ensemble of such observations by repeating
this process, but selecting each effect at random from its distribution each time.

Having generated such an ensemble, it can then be used to generate estimates of the
CMB variance on different scales including all of these effects without having to appeal
to the Central Limit Theorem. The ensemble of estimated variances can then be used to
estimate the distribution of measured variances, including all of these effects, and hence
the uncertainty of a measurement.

As neat as this sounds, and it can be very useful for modelling the statistical properties
of non-Gaussian and nonlinear effects, we should note some limitations of the Monte-Carlo
method. The most basic is that we must make many choices about what the underlying
distributions actually are. If we understand things well, this can be fine. But, as is quite
often, if we don’t a simple Gaussian will be chosen. We should also be aware that we will
neglect all of the things we don’t know about, for example systematics effects.

12The name “Monte-Carlo” comes from the emergence of the method during card games at Los Alamos
during the making of the atomic bomb, when the mathematician John von Neumann realized such
methods would help him win.
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