Astrophysical Cosmology 4 2004/2005

Problem set 4

(1) The flux density of an object at redshift z, observed at frequency ν_{0}, is

$$
f_{\nu}\left(\nu_{0}\right)=\frac{L_{\nu}\left([1+z] \nu_{0}\right)}{(1+z)\left[R_{0} S_{k}(r)\right]^{2}} .
$$

Consider a source that emits a thermal spectrum of temperature T. If observations are made at low frequencies $\left(h \nu_{0} \ll k T\right)$, show that the flux density increases with redshift for $z \gtrsim 1$, until a critical redshift is reached. Give an order-of-magnitude estimate for this redshift in terms of ν_{0} and T.
(2) The 'deceleration parameter' is defined as a dimensionless form of the second time derivative of the scale factor: $q \equiv-\ddot{R} R / \dot{R}^{2}$. Use the acceleration form of Friedmann's equation to obtain an expression for the current value of q, for a universe containing a mixture of vacuum energy and nonrelativistic matter. Show that the expansion decelerates only if $\Omega_{m}>2 \Omega_{v}$. Explain qualitatively why objects at a given redshift appear brighter in a decelerating universe and fainter in an accelerating universe.
(3) The equation for a radial null geodesic in the Robertson-Walker metric is $d r=$ $c d t / R(t)$, which can be cast in the observational form

$$
R_{0} d r=\frac{c}{H_{0}}\left[\left(1-\Omega_{m}-\Omega_{v}\right)(1+z)^{2}+\Omega_{v}+\Omega_{m}(1+z)^{3}\right]^{-1 / 2} d z
$$

for $z \lesssim 1000$. Expand this relation as a series in z to obtain an approximation for the luminosity distance $D_{\mathrm{L}}(z)=(1+z) R_{0} S_{k}(r)$ that is valid to second order in z. Show that the second-order correction depends only on the combination $\Omega_{m} / 2-\Omega_{v}$. Hence explain the sense of the near-degeneracy between Ω_{v} and Ω_{m} as determined from the supernova Hubble diagram.
(4) An object is observed at redshift z in a matter-dominated universe with density parameter Ω. Calculate the observed rate of change of redshift for the object (hint: remember $1+z=R_{0} / R_{\text {emit }}$, where both R_{0} and $R_{\text {emit }}$ change with time, and that time intervals in high-redshift objects are observed to be time-dilated). What fractional precision in observed frequency would be needed to detect cosmological deceleration in a decade?

