Astrophysical Cosmology 4 2004/2005

Problem set 3

(1) The equation for a radial null geodesic in the Robertson-Walker metric is $d r=$ $c d t / R(t)$. Using the relation between redshift and scale factor, $1+z \propto 1 / R(t)$, plus Friedmann's equation, deduce the differential relation between comoving distance and redshift:

$$
R_{0} d r=\frac{c}{H_{0}}\left[(1-\Omega)(1+z)^{2}+\Omega_{v}+\Omega_{m}(1+z)^{3}+\Omega_{r}(1+z)^{4}\right]^{-1 / 2} d z
$$

(2) Integrate this expression for the case of the $\Omega=1$ Einstein-de Sitter universe. In this model, calculate the apparent angle subtended by a galaxy of proper diameter 30 kpc , as a function of redshift (recall $c / H_{0}=3000 h^{-1} \mathrm{Mpc}$). Show that there is a critical redshift at which this angle has a minimum value.
(3) From the relation between distance and redshift, deduce the differential relation between redshift and time. Integrate this for the case of the $\Omega=1$ Einsteinde Sitter universe. A galaxy is observed at redshift 1.5 to contain stars that are 3.5 Gyr old: assuming $\Omega=1$, deduce a limit on the Hubble constant (remember $\left.H_{0}^{-1}=9.78 h^{-1} \mathrm{Gyr}\right)$.
(4) Show that the result of integrating $d r / d z$ between ∞ and z is the comoving horizon length. For redshifts below about 10^{4}, the universe may be assumed to be matter dominated: deduce an expression for the horizon length as a function of z that is valid for $10^{4} \gtrsim z \gtrsim 1$.

The microwave background was emitted at $z \simeq 1100$. Calculate the horizon size at this epoch. If $\Omega=1$, what angle on the sky does this length subtend? Is it surprising that the microwave background radiation is uniform to 1 part in 1000 ?

