

Astrophysical Cosmology 4 2004/2005

Problem set 1

(1) The Robertson-Walker metric can be written as

$$
c^{2} d \tau^{2}=c^{2} d t^{2}-R^{2}(t)\left(d r^{2}+S_{k}^{2}(r) d \psi^{2}\right)
$$

where $S_{k}(r)=\sin r(k=+1), r(k=0)$, or $\sinh r(k=-1)$ and $d \psi$ is the angular separation between the two events under consideration.
(a) Show that, in the $k=+1$ case, the spatial part of this 3D metric is the same as that for a 2D space that forms the surface of a sphere.
(b) The proper time interval $d \tau$ is not in general the same as the cosmic time interval measured by an observer at the origin. By considering a pair of events with $d r=d \psi=0$, explain why not.
(c) The element of radial proper distance is $R(t) d r$. How does this change with time? By considering events close to $r=0$, deduce Hubble's law, and show that $H=\dot{R} / R$.
(d) Show that the curved $k= \pm 1$ cases are in practice indistinguishable from the flat $k=0$ case provided R is large enough.
(2) Using the Robertson-Walker metric, show that the comoving separation between us and an object seen at redshift z is $r=\int c d t / R(t)$. Since r is independent of time, argue that the redshift is $1+z=R$ (now) $/ R$ (emit).
(3) Derive the same relation by considering the infinitesimal Doppler shift caused when a photon travels a distance d, thus encountering an observer with relative velocity $\delta v=H d$ (use $d=c \delta t$ and remember $H=\dot{R} / R$). Use the same approach to show that the 'peculiar' momentum of any particle decays $\propto 1 / R$ (use a Lorentz transformation of the particle 4 -momentum to get the change in momentum caused by δv).

