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Astrophysical Cosmology 4 2004/2005

Solution set 7

(1) Solve the problem of matching an inflationary vacuum-dominated de Sitter expansion
with R ∝ exp(Ht) onto a radiation-dominated era via a sudden change in the equation
of state. R and Ṙ must match at the join (why?). If this change is assumed to take
place at a time tc after the classical big bang, show that the condition tc = 1/2H is
required, so that the two solutions can be written as

R(t)
R(t = 0)

=

{ exp(t/2tc) (t < tc)√
e (t/tc) (t > tc)

.

Solution: We need to match R and Ṙ at tc in order that there is no jump in Ṙ. If
there were we would not have a finite R̈ at the match, whereas we know that R̈ ∝ ρ+3p
is finite. At the transition from inflation to a radiation-dominated universe at time tc we
must then have R(tc) = R0e

Htc = At
1/2
c and Ṙ(tc) = R0HeHtc = (1/2)At

−1/2
c . Taking

the ratio of these shows that H(tc) = (1/2)t−1
c . Hence from R(tc) we find eHtc = e1/2 =

At
1/2
c /R0, so that A = R0

√
e/tc. Finally we see that if R(t)/R0 = exp(t/2tc) for t < tc,

then R(t)/R0 =
√

e(t/tc) for t > tc.

(2) The largest features measured in large-scale structure today are superclusters of
size up to 100 h−1 Mpc. Calculate the angle that such structures would subtend if
placed on the last-scattering surface at z = 1100 (give the result as a function of Ωm,
and consider both models with no vacuum energy, and flat vacuum-dominated models).
Given that we possess CMB data to a highest angular multipole of ` ' 1000, discuss
the observability of infant superclusters as a function of Ωm.

Solution: The distance to the CMB is given by the comoving horizon size today is

DH = R0

∫ 1100

0

dr

dz
dz ≈ R0

∫ ∞

0

dr

dz
dz =

2c

H0
× Ωα

m

where α = 1 for an open (Ωv = 0) model and α = 0.4 for a flat (Ωm + Ωv = 1) model
(see notes). The prefactor 2c/H0 ≈ 6000h−1Mpc. The multipole ` = 1000 corresponds



to an angular scale of θ = 2π/` ≈ 0.006 radians. A 100h−1Mpc proto-supercluster at
the horizon subtends (100/6000)Ω−α

m = (1/60)Ω−α
m radians. Hence proto-clusters can

be seen directly in the CMB if Ωm ≥ 0.38 for a flat model and 0.09 for a flat universe.
Given we think the universe is flat and Ωm ≈ 0.3, we can expect to see proto-clusters
in the CMB in principle.

A spherical perturbation exists in the present-day universe. Its radius is
50 h−1 Mpc and its density is 1.1 times the mean value. Suppose we could observe
the perturbation to the CMB temperature caused by the progenitor of such a structure
located at z = 1100. What mechanisms dominate the temperature fluctuation, and
what is the approximate magnitude of ∆T/T? (assume that the universe is the matter-
dominated Ω = 1 Einstein-de Sitter model).

Solution: For an Einstein-de Sitter universe the growth of linear density perturbations
is given by δ ∝ a. If its present-day overdensity is δ0 = 0.1, its density at the
CMB, z = 1100, is δ = 0.1/1100 = 1.1 × 10−5. Its potential field is given by
∆Φ = GM/r, where M = (4π/3)δρr3. The relative density is given by δρ = 0.1ρ̄,
where ρ̄ = 2.78 × 1011M¯Ωh2Mpc−3 is the mean density of the universe. Hence the
mass of the object is M = 1016.16h−1M¯. The potential now is ∆Φ/c2 = 10−4.86. As
the linear potential does not evolve in an EdS universe, this will be its value at the
CMB. Hence we can estimate the magnitude of the two important effect generating
the CMB; (1) Sachs-Wolfe effect; ∆T/T = (1/3)∆Φ/c2 ≈ 10−5.34; (2) the adiabatic
effect; ∆T/T = (1/3)δ(zCMB) = 10−4.52. We see that this object will produce both
effects with similar magnitude – but opposite sign. SW cools radiation, as energy is lost
climbing out of the potential well, while the adiabatic effect heats the radiation up.

(3) [part of 2001 degree exam question] One hypothesis for the origin of dark matter
is that it consists of weakly interacting relic particles. Explain the reason why it is
normal to distinguish three types (‘hot’, ‘warm’, and ‘cold’) of such particles, and give
the approximate mass scales associated with each case.

A relic dark-matter particle imposes a coherence scale on cosmic structure
depending on the time at which it becomes non-relativistic. Given that the age of
the universe is approximately t = 1 s when its temperature is 1010 K, calculate this
coherence scale in comoving length units as a function of the mass (express your result
in comoving Mpc, using mass units of eV). Hence summarize the astronomical reasons
why it is considered unlikely that the universe is dominated by hot dark matter.

Solution: Hot Dark Matter (HDM) is a massive particle species that decouples, or
freezes out when its interaction rate drops below the Hubble expansion rate (〈σv〉n <
H(z)−1), when the particles velocity is still relativistic. An example of HDM is a massive
neutrino with m ∼ 100eV. Warm Dark Matter (WDM), which freezes out early, but
with 100× more degrees of freedom and is still relativistic, and has mass M ∼ 10keV.
There are no major contenders for WDM. Cold Dark Matter (CDM) is non-relativistic
when it freezes out, and so is more massive. If its physics is neutrino-like, the number
density is exponentially suppressed (n ∼ me−m/Mfreeze) and so has mass m ∼ 100GeV.
The current prime candidate for CDM is the lightest supersymmetric particles, the
neutralino. [5 Marks]



The coherence scale is set by free-streaming of massive particles out of structure.
The proper damping scale from free-streaming is ∼ ct at a time when kT = mc2. As
T ∝ R−1 and R ∝ t1/2 in the radiation-dominated regime,

t ≈
(

T

1010K

)−2

seconds

given that T = 1010K at t = 1 second. The freezout temperature, T , for a particle with
rest mass m is T = mc2/k. A 1eV particle has energy E = mc2 = 1.602× 10−19 in SI
units, and k = 1.38× 10−23, so T = 104.1(m/1eV)K. Now ct is the proper length, so we
need to multiply by (1 + z) = T/2.73K to get a comoving distance (ie a distance today.
So the comoving coherence scale is

L = ct

(
T

2.73K

)
= c

(
T

1010K

)−2
T

2.73K
.

Which gives us

L = 105.55Mpc
(

T

1K

)−1

.

Substituting T for mass m we find the comoving coherence scale in terms of the particle
mass, m;

L = 28Mpc
( m

eV

)−1

[10 Marks]

Hence if the universe is dominated by HDM where m ∼ 100eV we find the
comoving coherence scale is that of superclusters. But superclusters are still forming
today, and we see galaxies that exist at redshifts of z > 5. Hence we need a galaxy-size
damping scale, giving m > 1keV. [5 Marks]


