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Solution set 6

(1) Is it a good approximation to treat the matter in the early stages of the big bang
as an ideal gas? Test this by comparing the typical kinetic energy to the electrostatic
potential energy between a particle and a neighbour at a typical distance. Recall that
the number density for relativistic particles in thermal equilibrium is n ∼ g (kT/h̄c)3.

Solution: The typical inter-particle spacing is n−1/3. The typical potential energy of
interaction for a particles with its nearest neighbour is

Epot =
e2

4πε0n−1/3
∼ g1/3 e2kT

4πε0h̄c
.

The typical thermal energy is Etherm = kT . Taking the ratio

Epot

Etherm
∼ g1/3α

where α = e2/(4πε0h̄c) = 1/137 is the fine-structure constant. At high temperatures
g → 100 (i.e. there are about 100 particles in the standard model), so that the
electromagnetic potential energy is much smaller than the thermal energy. Hence it
is safe to treat matter as an ideal gas in the early stages of the big bang. Note that we
would have reached the opposite conclusion if g ∼ 106, so we need to assume we know
the right number of particle species in the early universe.

(2) The redshift of last scattering is approximately 1100, but this assumes that
intergalactic matter is largely neutral for lower redshifts. Observationally, this is not
true at low redshift, where the gas is ionized by ultraviolet light from stars and quasars.
Assume that the baryonic material in the universe is re-ionized suddenly at a redshift
zc, and calculate the resulting optical depth due to Thomson scattering. How large does
zc have to be before this reaches unity, so that typical CMB photons would no longer
be scattered at z = 1100? You may assume the distance-redshift relation

R0dr =
c

H0

[
(1− Ωm − Ωv)(1 + z)2 + Ωv + Ωm(1 + z)3

]−1/2
dz.



Assume that zc À 1.

Solution: The optical depth due to Thomson scattering from electrons with a number
density ne is

τ =
∫

d` neσT

where d` = element of proper length, and σT is the Thomson cross-section. The proper
length is given by d` = R0dr/(1+z) and the number density scales as ne(z) = n0

e(1+z)3.
Hence the optical depth is

τ = σT n0
e

∫ zc

0

R0dr(1 + z)2.

At large redshift

R0dr =
c

H0Ω
1/2
m

dz

(1 + z)3/2
,

so the integral is dominated by the high-redshift part. Integrating we find

τ ≈ 2cσT n0
e

3H0Ω
1/2
m

(1 + zc)3/2.

We now need to relate n0
e to the baryon density, ΩB . The density of baryons is given

by ρB = µmpne, where µ = 1.14 for 25% Helium by mass, and mp is the mass of the
proton. This gives us ρB − 1.88× 10−26 kg m−3. Given that σT = 6.65× 10−29m2, and
c/H0 = 3000h−1Mpc and 1pc = 3, 0856× 1016m, we find that

τ ≈ 0.04ΩBΩ−1/2
m h(1 + zc)3/2.

For ΩB = 0.04, Ωm = 0.3 and h = 0.7 we find that the optical depth is unity for
zc = 60. Since we can see the primordial fluctuations intrinsic to last scattering at the
CMB, we can put an upper limit of 60 to redshift at which stars and quasars could have
re-ionising the universe.

(3) The spherical collapse model represents the radius–time relation of a proto-object
as

r = A(1− cos θ)
t = B(θ − sin θ).

Show that, if A3 = GMB2, these relations satisfy r̈ = −GM/r2. Expand these relations
up to order θ5 to show that, for small t:

r ' A

2

(
6t

B

)2/3
[
1− 1

20

(
6t

B

)2/3
]

.

Hence show that the linear-theory perturbation to the density is

δlin =
3
20

(
6t

B

)2/3

.



What prediction does this expression make for the density inside the sphere if it is
extrapolated to the point of collapse to a singularity?

Solution: We first want to show that r̈ = −GM/r2 if A3 = GMB2. The time
derivative can be written

d

dt
=

(
dt

dθ

)−1
d

dθ
=

1
B(1− cos θ)

d

dθ
.

Hence
ṙ =

A sin θ

B(1− cos θ)
.

Differentiating again we find

r̈ =
−A

[B(1− cos θ)]2]
=
−A3/B2

r2

which equals −GM/r2 if GM = A3/B2. We now want to expand r and t to 5th order
in θ to find how r evolves with t. Expanding we find

r = A(1− cos θ) ≈ A(θ2/2− θ4/24 + O(θ6))

and
t = B(θ − sin θ) ≈ B(θ3/6− θ5/120 + O(θ7)).

So (6t/B) ≈ θ3(1 − θ2/20). We can invert this by taking the first order solution,
θ ≈ (6t/B)1/3. We can find the second order solution by inverting the fifth order
solution; θ = (6t/B)1/3(1 + θ2/60), and replacing the θ on the RHS with the first order
solution, giving

θ =
(

6t

B

)1/3
(

1 +
1
60

(
6t

B

)2/3
)

.

we can now insert this in the expansion for r;

r =
A

2
θ2(1− θ2/12) =

A

2

(
6t

B

)2/3
(

1 +
1
30

(
6t

B

)2/3
)(

1− 1
12

(
6t

B

)2/3
)

.

Multiplying the final two brackets and keeping only the leading term we find

r =
A

2

(
6t

B

)2/3
(

1− 1
20

(
6t

B

)2/3
)

.

The leading term here is r ∝ t2/3, which is the expansion rate of an EdS universe. The
second term is then the deviation from this due to the perturbation. The density of the
perturbation is given by ρ ∝ 1/r3. Hence the fractional overdensity is

δρ

ρ
= −3

δr

r
=

3
20

(
6t

B

)2/3

.



So we find that the overdensity, to linear order, grows as δ ∝ t2/3 ∝ a, i.e. at the
same rate as the expansion scale of the universe. This may seem like a rather odd
coincidence, but for an EdS universe, the only scale available is the scale length. It’s
also worth noting that in the linear regime, the growth rate of density perturbations is
independent of scale. This turns out to be a consequence of an 1/r2 force law (although
we shall not prove it here). Note also that during linear growth of perturbations, the
perturbation is still expanding, only not as fast as the rest of the universe. Finally,
when this object finally does collapse to a singularity, r = 0 and θ = 2π and t = 2πB.
The linear overdensity at this time will be

δlin =
3
20

(12π)2/3 ≈ 1.69.


