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Astrophysical Cosmology 4 2004/2005

Solution set 5

(1) Consider an expanding universe that contains a fluid with a relativistic equation of
state: p = u/3, where u is the energy density. By considering conservation of energy in
a volume ∝ R(t)3, show that the mass density scales as ρ ∝ R(t)−4.

Solution: The first law of thermodynamics (conservation of energy) tells us that
dE = TdS − PdV . For adiabatic changes dS = 0, so dE = −PdV . Lets write
E = uV , where u is the energy-density. Then d(uV ) = −PdV = −u/3dV for
relativistic fluids. Expanding the LHS; d(uV ) = V du + udV = −u/3dV , so we can
write V du = −(4/3)udV , or du/u = −(4/3)dV/V . Since V ∝ R3, then dV/V = 3dR/R
so that du/u = −4dR/R and hence u ∝ R−4.

(2) Write down Friedmann’s equation for the evolution of the cosmic scale factor, R(t).
If the mass density is dominated by a relativistic fluid, derive the relation between
cosmological time and density (argue that curvature can always be neglected at early
times).

Solution: Friedmann’s equation is

Ṙ2 =
8πGρR2

3
− kc2.

For a relativistic fluid ρ ∝ R−4, so that ρR2 ∝ R−2. At small R, we can neglect the
constant −kc2 term, so

Ṙ2 = BR−2

where B = 8πGρR4/3 is a constant. Taking the expanding (positive) square root, we
find dR/dt =

√
B/R or RdR =

√
Bdt. Integration give us

t = R2/(2
√

B) =
√

3
32πGρ

.

Note that we still find the timescale is of the form t ∝ 1/
√

Gρ, which is true of all
gravitational systems.



(3) The universe currently contains black-body radiation with T = 2.73 K. Calculate
the contribution of this radiation to the density parameter (express your result in terms
of the dimensionless Hubble parameter, h. You will need the value of the Stefan–
Boltzmann constant, which is σ = 5.67× 10−8 W m−2 K−4). Hence deduce the redshift
at which the densities of radiation and non-relativistic matter were equal (expressed as
a function of Ωm and h).

Solution: The energy-density of radiation is given by ρ = 4σT 4/c3. Hence ρ(T =
2.73K) = 4.676×10−31kg m−3. Comparing this with ρ = 1.88×10−26Ωh2kg m−3, from
the notes, we find Ωrh

2 = 2.49× 10−5. The energy-density in matter and radiation are
equal when 1 + zeq = ρmatter

0 /ρrad
0 = Ωmh2/Ωrh

2. This gives 1 + zeq = 40, 208Ωmh2.

(4) The phenomenon of neutrino freezeout means that the universe should also contain
three species of neutrinos with a temperature (4/11)1/3 smaller than that of the photons.
Show that this boosts the total relativistic content by a factor 1.68, and deduce a revised
redshift of matter-radiation equality.

Solution: When electrons and positrons annihilate, e+ + e− → γ we conserved
entropy, and we know that s(Fermions) = (7/8)s(bosons) for the same temperature
and number of degrees of freedom. Hence the initial entropy in e+, e− and γ is
(2 × 7/8 + 1)sγ = (11/4)sγ . Given that s ∝ T 3, this tells us that the temperature in
the radiation field is raised by a factor (11/4)1/3 compared to that in the neutrinos (see
lecture notes). Since u(fermions) = (7/8)u(Bosons) and we have 3 species of neutrino
the energy-density in the neutrinos is

uν

uγ
= 3× 7

8

(
Tν

Tγ

)4

=
21
8

(
4
11

)4/3

≈ 0.68.

So the total energy of the radiation is boosted by the neutrino fraction, and hence 1+zeq

is divided by a factor 1.68, i.e., there is more radiation around so equality happens later.
This changes the redshift of equality to 1 + zeq = 23, 933Ωmh2.

(5) Using your previous results, estimate the age of the universe at matter-radiation
equality, if Ωm = 0.3 and h = 0.7. Hence estimate the proper size of the ‘horizon
length’ at that time, by evaluating ct. What value does this length take when expressed
in comoving coordinates? (i.e. what size does this length expand to today?).

Solution: Using H2
0 = 8πGρmatter

0 /(3Ωm) (from the definition of Ωm), and that at
zeq we have ρrad = ρm = ρmatter

0 (1 + zeq)3, we can re-write the age of the universe in
the relativistic regime by

teq =
1

2H0
Ω−1/2

m (1 + zeq)−3/2.

Plugging in Ωm = 0.3 and h = 0.7, this gives us

teq = 4.375× 10−6H−1
0 = 61, 000 years.



The approximate proper size of the horizon length at this time is cteq = 61, 000 light
years, or 18,700 parsecs. This will have expanded by a factor of 1+ zeq by today, giving
65.8 Mpc today.

(6) Contrast this approximate calculation of the comoving horizon length at matter-
radiation equality with the exact result, derived using the equation for a radial null
geodesic in a flat universe:

R0 dr =
c

H0

[
Ωv + Ωm(1 + z)3 + Ωr(1 + z)4

]−1/2
dz.

Solution: The problem with the previous approach is that matter is just becoming
important at teq. The proper comoving distance is given by

R0r =
∫ z

0

cdz

H(z)
,

where H(z)2 = H2
0 [Ωv + Ωm(1 + z)3 + Ωr(1 + z)4]. We ignore curvature, since this is

negligible at high redshift. We may also ignore vacuum energy at high redshift, since
this is has only become dominant today. Transforming the integral to a = (1 + z)−1 we
find

R0r =
c

H0

∫ a

0

da√
Ωma + Ωr

.

Changing variables again to y = (Ωm/Ωr)a we find

R0req =
c

H0

∫ 1

0

dy√
1 + y

Ω1/2
r

Ωm
.

This can be integrated to give

R0req = 2(
√

2− 1)
c

H0
Ω−1/2

m (1 + zeq)−1/2.

Evaluating for Ωm = 0.3 and h = 0.7 this is gives a comoving distance of R0req = 109.3
Mpc.


